1887

Abstract

Recombinant measles viruses (MV) in which the authentic glycoprotein genes encoding the fusion and the haemagglutinin (H) proteins of the Edmonston (ED) vaccine strains were swapped singly or doubly for the corresponding genes of a lymphotropic MV wild-type virus (strain WTF) were used previously to investigate MV tropism in cell lines in tissue culture. When these recombinants and their parental strains, the molecular ED-based clone (ED-tag) and WTF, were used to infect cotton rats, only viruses expressing the MV WTF H protein replicated in secondary lymphatic tissues and caused significant immunosuppression. , viruses containing the ED H protein revealed a tropism for human peripheral blood lymphocytes as documented by enhanced binding and virus production, whereas those containing the WTF H protein replicated well in monocyte-derived dendritic cells (Mo-DC). This did not correlate with more efficient binding of these viruses to DC, but with an enhancement of uptake, virus spread, accumulation of viral antigens and virus production. Thus, replacement of the ED H protein with WTF H protein was sufficient to confer the DC tropism of WTF to ED-tag . This study suggests that the MV H protein plays an important role in determining cell tropism to immune cells and this may play an important role in the induction of immunosuppression .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-8-1835
2001-08-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/8/0821835a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-8-1835&mimeType=html&fmt=ahah

References

  1. Banchereau J., Steinman R. M. 1998; Dendritic cells and the control of immunity. Nature 392:245–252
    [Google Scholar]
  2. Bartz R., Firsching R., Rima B., ter Meulen V., Schneider-Schaulies J. 1998; Differential receptor usage by measles virus strains. Journal of General Virology 79:1015–1025
    [Google Scholar]
  3. Borrow P., Oldstone M. B. A. 1995; Measles virus–mononuclear cell interactions. In Measles Virus pp 85–100 Edited by Billeter M. A., ter Meulen V. Berlin, Heidelberg, New York: Springer-Verlag;
    [Google Scholar]
  4. Cocks B. G., Chang C. J., Carballido J. M., Yssel H., de Vries J. E., Aversa G. 1995; A novel receptor involved in T cell activation. Nature 376:260–263
    [Google Scholar]
  5. Erlenhöfer C., Wurzer W., Löffler S., Schneider-Schaulies S., ter Meulen V., Schneider-Schaulies J. 2001; CD150 (SLAM) is a receptor for measles virus but is not involved in contact-mediated proliferation inhibition. Journal of Virology 75:4499–4505
    [Google Scholar]
  6. Escoffier C., Manie S., Vincent S., Muller C. P., Billeter M. A., Gerlier D. 1999; Nonstructural C protein is required for efficient measles virus replication in human peripheral blood cells. Journal of Virology 73:1695–1698
    [Google Scholar]
  7. Fugier-Vivier I., Servet-Delprat C., Rivailler P., Rissoan M., Liu Y., Rabourdin-Combe C. 1997; Measles virus suppresses cell-mediated immunity by interfering with the survival and function of dendritic cells. Journal of Experimental Medicine 186:813–823
    [Google Scholar]
  8. Goodbourn S., Didcock L., Randall R. E. 2000; Interferons: cell signalling, immune modulation, antiviral responses and virus countermeasures. Journal of General Virology 81:2341–2364
    [Google Scholar]
  9. Griffin D. E. 1995; Immune responses during measles virus infection. In Measles Virus pp 117–134 Edited by Billeter M. A, ter Meulen V. Berlin, Heidelberg, New York: Springer-Verlag;
    [Google Scholar]
  10. Griffin D. E., Ward B. J., Esolen L. M. 1994; Pathogenesis of measles virus infection: an hypothesis for altered immune responses. Journal of Infectious Diseases 170:24–31
    [Google Scholar]
  11. Grosjean I., Caux C., Bella C., Berger I., Wild F., Banchereau J., Kaiserlian D. 1997; Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. Journal of Experimental Medicine 186:801–812
    [Google Scholar]
  12. Johnston I. C. D., ter Meulen V., Schneider-Schaulies J., Schneider-Schaulies S. 1999; A recombinant measles vaccine virus expressing wild-type glycoproteins: consequences for viral spread and cell tropism. Journal of Virology 73:6903–6915
    [Google Scholar]
  13. Karp C. L., Wysocka M., Wahl L. M., Ahearn J. M., Cuomo P. J., Sherry B., Trinchieri G., Griffin D. E. 1996; Mechanism of suppression of cell-mediated immunity by measles virus. Science 273:228–231
    [Google Scholar]
  14. Katayama Y., Hirano A., Wong T. C. 2000; Human receptor for measles virus (CD46) enhances nitric oxide production and restricts virus replication in mouse macrophages by modulating the production of alpha/beta interferon. Journal of Virology 74:1252–1257
    [Google Scholar]
  15. Klagge I. M., Schneider-Schaulies S. 1999; Virus interactions with dendritic cells. Journal of General Virology 80:823–833
    [Google Scholar]
  16. Klagge I. M., ter Meulen V., Schneider-Schaulies S. 2000; Measles virus-induced promotion of dendritic cell maturation by soluble mediators does not overcome the immunosuppressive activity of viral glycoproteins on the cell surface. European Journal of Immunology 30:2741–2750
    [Google Scholar]
  17. Knight S. C., Patterson P. 1997; Bone-marrow derived dendritic cells, infection with human immunodeficiency virus and immunopathology. Annual Review of Immunology 15:593–615
    [Google Scholar]
  18. Kobune F., Sakata H., Sugiura A. 1990; Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. Journal of Virology 64:700–705
    [Google Scholar]
  19. Lecouturier V., Fayolle J., Caballero M., Carabana J., Celma M. L., Fernandez-Munoz R., Wild T. F., Buckland R. 1996; Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. Journal of Virology 70:4200–4204
    [Google Scholar]
  20. McChesney M. B., Altmann A., Oldstone M. B. A. 1988; Suppression of T lymphocyte function by measles virus is due to cell cycle arrest in G1. Journal of Virology 140:1269–1273
    [Google Scholar]
  21. Manchester M., Eto D. S., Valsamakis A., Liton P. B., Fernandez-Munoz R., Rota P. A., Bellini W. J., Forthal D. N., Oldstone M. B. A. 2000; Clinical isolates of measles virus use CD46 as a cellular receptor. Journal of Virology 74:3967–3974
    [Google Scholar]
  22. Mrkic B., Odermatt B., Klein M. A., Billeter M. A., Pavlovic J., Cattaneo R. 2000; Lymphatic dissemination and comparative pathology of recombinant measles viruses in genetically modified mice. Journal of Virology 74:1364–1372
    [Google Scholar]
  23. Naniche D., Reed S. I., Oldstone M. B. A. 1999; Cell cycle arrest during measles virus infection: a G0-like block leads to suppression of retinoblastoma protein expression. Journal of Virology 73:1894–1901
    [Google Scholar]
  24. Naniche D., Yeh A., Eto D., Manchester M., Friedman R. M., Oldstone M. B. A. 2000; Evasion of host defenses by measles virus: wildtype measles virus infection interferes with induction of alpha/beta interferon production. Journal of Virology 74:7478–7484
    [Google Scholar]
  25. Niewiesk S., Eisenhuth I., Fooks A., Clegg J. C., Schnorr J. J., Schneider-Schaulies S., ter Meulen V. 1997; Measles virus-induced immune suppression in the cotton rat (Sigmodon hispidus) model depends on viral glycoproteins. Journal of Virology 71:7214–7219
    [Google Scholar]
  26. Patterson J. B., Thomas D., Lewicki H., Billeter M. A., Oldstone M. B. A. 2000; V and C proteins of measles virus function as virulence factors in vivo. Virology 267:80–89
    [Google Scholar]
  27. Radecke F., Spielhofer P., Schneider H., Kaelin K., Huber M., Dötsch C., Christiansen G., Billeter M. A. 1995; Rescue of measles virus from cloned cDNA. EMBO Journal 14:5773–5784
    [Google Scholar]
  28. Sallusto F., Lanzavecchia A. 1995; Dendritic cells use macropinocytosis and the mannose receptor to concentrate antigen to the MHC class II compartment. Downregulation by cytokines and bacterial products.. Journal of Experimental Medicine 182:389–400
    [Google Scholar]
  29. Schlender J., Schnorr J. J., Spielhoffer P., Cathomen T., Cattaneo R., Billeter M. A., ter Meulen V., Schneider-Schaulies S. 1996; Interaction of measles virus glycoproteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro. Proceedings of the National Academy of Sciences, USA 93:13194–13199
    [Google Scholar]
  30. Schneider-Schaulies S., ter Meulen V. 1998; Measles virus induced immunosuppression. Nova Acta Leopoldina 307:1–13
    [Google Scholar]
  31. Schneider-Schaulies S., Schneider-Schaulies J., Schuster A., Bayer M., Pavlovic J., ter Meulen V. 1994; Cell type-specific MxA-mediated inhibition of measles virus transcription in human brain cells. Journal of Virology 68:6910–6917
    [Google Scholar]
  32. Schneider-Schaulies J., Schnorr J. J., Brinckmann U., Dunster L. M., Baczko K., Liebert U. G., Schneider-Schaulies S., ter Meulen V. 1995; Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains. Proceedings of the National Academy of Sciences, USA 92:3943–3947
    [Google Scholar]
  33. Schnorr J. J., Schneider-Schaulies S., Simon-Jodicke A., Pavlovic J., Horisberger M. A., ter Meulen V. 1993; MxA-dependent inhibition of measles virus glycoprotein synthesis in a stably transfected human monocytic cell line. Journal of Virology 67:4760–4768
    [Google Scholar]
  34. Schnorr J. J., Xanthakos S., Keikavoussi P., Kampgen E., ter Meulen V., Schneider-Schaulies S. 1997; Induction of maturation of human blood dendritic cell precursors by measles virus is associated with immunosuppression. Proceedings of the National Academy of Sciences, USA 94:5326–5331
    [Google Scholar]
  35. Servet-Delprat C., Vidalain O., Azocar O., Le Deist F., Fischer A., Rabourdin-Combe C. 2000a; Consequences of Fas-mediated human dendritic cell apoptosis induced by measles virus. Journal of Virology 74:4387–4393
    [Google Scholar]
  36. Servet-Delprat C., Vidalain O., Bausinger H., Manie O., Le Deist F., Azocar O., Fischer A., Rabourdin-Combe C. 2000b; Measles virus induces abnormal differentiation of CD40-ligand activated human dendritic cells. Journal of Immunology 164:1753–1760
    [Google Scholar]
  37. Sevilla N., Kunz S., Holz A., Lewicki H., Homann D., Yamada H., Campbell K. P., de la Torre J. C., Oldstone M. B. A. 2000; Immunosuppression and resultant viral persistence by specific targeting of dendritic cells. Journal of Experimental Medicine 192:1249–1260
    [Google Scholar]
  38. Sidorenko S. P., Clark E. A. 1993; Characterisation of a cell surface glycoprotein IPO-3, expressed on activated human B and T cells. Journal of Immunology 151:4614–4624
    [Google Scholar]
  39. Steineur M., Grosjean I., Bella C., Kaiserlian D. 1998; Langerhans cells are susceptible to measles virus infection and actively suppress T cell proliferation. European Journal of Dermatology 8:413–420
    [Google Scholar]
  40. Takeda M., Kato A., Kobune F., Sakata H., Li Y., Shioda T., Sakai Y., Asakawa M., Nagai Y. 1998; Measles virus attenuation associated with transcriptional impediment and a few amino acid changes in the polymerase and accessory proteins. Journal of Virology 72:8690–8696
    [Google Scholar]
  41. Takeuchi K., Miyajima N., Kobune F., Tashiro M. 2000; Comparative nucleotide sequence analysis of the entire genomes of B95a cell-isolated and Vero cell-isolated measles viruses from the same patient. Virus Genes 20:253–257
    [Google Scholar]
  42. Yanagi Y., Cubitt B. A., Oldstone M. B. 1992; Measles virus inhibits mitogen-induced T cell proliferation but does not directly perturb the T cell activation process inside the cell. Virology 187:280–289
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-8-1835
Loading
/content/journal/jgv/10.1099/0022-1317-82-8-1835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error