1887

Abstract

The potential of the RNA phage MS2 to accommodate extra amino acids in its major coat protein has been examined. Accordingly, a pentapeptide was encoded in the genome as an N-terminal extension. In the MS2 crystal structure, this part of the coat protein forms a loop that extends from the outer surface of the icosahedral virion. At the RNA level, the insert forms a large loop at the top of an existing hairpin. This study shows that it is possible to maintain inserts in the coat protein of live phages. However, not all inserts were genetically stable. Some suffer deletions, while others underwent adaptation by base substitutions. Whether or not an insert is stable appears to be determined by the choice of the nucleic acid sequence used to encode the extra peptide. This effect was not caused by differential translation, because coat-protein synthesis was equal in wild-type and mutants. We conclude that the stability of the insert depends on the structure of the large RNA hairpin loop, as demonstrated by the fact that a single substitution can convert an unstable loop into a stable one.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-7-1797
2001-07-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/7/0821797a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-7-1797&mimeType=html&fmt=ahah

References

  1. Arora, R., Priano, C., Jacobson, A. B. & Mills, D. R. ( 1996; ). cis-acting elements within an RNA coliphage genome: fold as you please, but fold you must! Journal of Molecular Biology 258, 433-446.[CrossRef]
    [Google Scholar]
  2. Berkhout, B. & van Duin, J. ( 1985; ). Mechanism of translational coupling between coat protein and replicase genes of RNA bacteriophage MS2. Nucleic Acids Research 13, 6955-6967.[CrossRef]
    [Google Scholar]
  3. Berkhout, B., Schmidt, B. F., van Strien, A., van Boom, J., van Westrenen, J. & van Duin, J. ( 1987; ). Lysis gene of bacteriophage MS2 is activated by translation termination at the overlapping coat gene. Journal of Molecular Biology 195, 517-524.[CrossRef]
    [Google Scholar]
  4. Borisova, G., Borschukova Wanst, O., Mezule, G., Skrastina, D., Petrovskis, I., Dislers, A., Pumpens, P. & Grens, E. ( 1996; ). Spatial structure and insertion capacity of immunodominant region of hepatitis B core antigen. Intervirology 39, 16-22.
    [Google Scholar]
  5. Burke, K. L., Dunn, G., Ferguson, M., Minor, P. D. & Almond, J. W. ( 1988; ). Antigen chimaeras of poliovirus as potential new vaccines. Nature 332, 81-82.[CrossRef]
    [Google Scholar]
  6. Cheong, C., Varani, G. & Tinoco, I. ( 1990; ). Solution structure of an unusually stable RNA hairpin, 5′GGAC(UUCG)GUCC. Nature 346, 680-682.[CrossRef]
    [Google Scholar]
  7. Dedieu, J. F., Ronco, J., van der Werf, S., Hogle, J. M., Henin, Y. & Girard, M. ( 1992; ). Poliovirus chimeras expressing sequences from the principal neutralization domain of human immunodeficiency virus type 1. Journal of Virology 66, 3161-3167.
    [Google Scholar]
  8. de Smit, M. H. & van Duin, J. ( 1990a; ). Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proceedings of the National Academy of Sciences, USA 87, 7668-7672.[CrossRef]
    [Google Scholar]
  9. de Smit, M. H. & van Duin, J. ( 1990b; ). Control of prokaryotic translational initiation by mRNA secondary structure. Progress in Nucleic Acid Research and Molecular Biology 38, 1-35.
    [Google Scholar]
  10. de Smit, M. H. & van Duin, J. ( 1993; ). Translational initiation at the coat-protein gene of phage MS2: native upstream RNA relieves inhibition by local secondary structure. Molecular Microbiology 9, 1079-1088.[CrossRef]
    [Google Scholar]
  11. Federoff, N. (1975). Replicase of the phage f2. In RNA Phages, pp. 238–258. Edited by N. D. Zinder. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  12. Heal, K. G., Hill, H. R., Stockley, P. G., Hollingdale, M. R. & Taylor-Robinson, A. W. ( 1999; ). Expression and immunogenicity of a liver stage malaria epitope presented as a foreign peptide on the surface of RNA-free MS2 bacteriophage capsids. Vaccine 18, 251-258.[CrossRef]
    [Google Scholar]
  13. Heus, H. A. & Pardi, A. ( 1991; ). Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science 253, 191-194.[CrossRef]
    [Google Scholar]
  14. Klovins, J., van Duin, J. & Olsthoorn, R. C. L. ( 1997; ). Rescue of the RNA phage genome from RNase III cleavage. Nucleic Acids Research 25, 4201-4208.[CrossRef]
    [Google Scholar]
  15. Koo, M., Bendahmane, M., Lettieri, G. A., Paoletti, A. D., Lane, T. E., Fitchen, J. H., Buchmeier, M. J. & Beachy, R. N. ( 1999; ). Protective immunity against murine hepatitis virus (MHV) induced by intranasal or subcutaneous administration of hybrids of tobacco mosaic virus that carries an MHV epitope. Proceedings of the National Academy of Sciences, USA 96, 7774-7779.[CrossRef]
    [Google Scholar]
  16. Kratz, P. A., Böttcher, B. & Nassal, M. ( 1999; ). Native display of complete foreign protein domains on the surface of hepatitis B virus capsids. Proceedings of the National Academy of Sciences, USA 96, 1915-1920.[CrossRef]
    [Google Scholar]
  17. Licis, N., van Duin, J., Balklava, Z. & Berzins, V. ( 1998; ). Long-range translational coupling in single-stranded RNA bacteriophages: an evolutionary analysis. Nucleic Acids Research 26, 3242-3246.[CrossRef]
    [Google Scholar]
  18. Licis, N., Balklava, Z. & van Duin, J. ( 2000; ). Forced retroevolution of an RNA bacteriophage. Virology 271, 298-306.[CrossRef]
    [Google Scholar]
  19. Lomonossoff, G. P. & Johnson, J. E. ( 1996; ). Use of macromolecular assemblies as expression systems for peptides and synthetic vaccines. Current Opinion in Structural Biology 6, 176-182.[CrossRef]
    [Google Scholar]
  20. Mastico, R. A., Talbot, S. J. & Stockley, P. G. ( 1993; ). Multiple presentation of foreign peptides on the surface of an RNA-free spherical bacteriophage capsid. Journal of General Virology 74, 541-548.[CrossRef]
    [Google Scholar]
  21. Olsthoorn, R. C. L. (1996). Structure and evolution of RNA phages. PhD Thesis, Leiden University, The Netherlands.
  22. Olsthoorn, R. C. L. & van Duin, J. ( 1996; ). Random removal of inserts from an RNA genome: selection against single-stranded RNA. Journal of Virology 70, 729-736.
    [Google Scholar]
  23. Olsthoorn, R. C. L., Licis, N. & van Duin, J. ( 1994; ). Leeway and constraints in the forced evolution of a regulatory RNA helix. EMBO Journal 13, 2660-2668.
    [Google Scholar]
  24. Peabody, D. S. ( 1997; ). Subunit fusion confers tolerance to peptide insertions in a virus coat protein. Archives of Biochemistry and Biophysics 347, 85-92.[CrossRef]
    [Google Scholar]
  25. Pushko, P., Kozlovskaya, T., Sominskaya, I., Brede, A., Stankevica, E., Ose, V., Pumpens, P. & Grens, E. ( 1993; ). Analysis of RNA phage fr coat protein assembly by insertion, deletion and substitution mutagenesis. Protein Engineering 6, 883-891.[CrossRef]
    [Google Scholar]
  26. Remaut, E., Stanssens, P. & Fiers, W. ( 1981; ). Plasmid vectors for high-efficiency expression controlled by the PL promoter of coliphage lambda. Gene 15, 81-93.[CrossRef]
    [Google Scholar]
  27. Skripkin, E. A., Adhin, M. R., de Smit, M. H. & van Duin, J. ( 1990; ). Secondary structure of the central region of bacteriophage MS2 RNA. Conservation and biological significance. Journal of Molecular Biology 211, 447-463.[CrossRef]
    [Google Scholar]
  28. Smith, A. D., Geisler, S. C., Chen, A. A., Resnick, D. A., Roy, B. M., Lewi, P. J., Arnold, E. & Arnold, G. F. ( 1998; ). Human rhinovirus type 14:human immunodeficiency virus type 1 (HIV-1) V3 loop chimeras from a combinatorial library induce potent neutralizing antibody responses against HIV-1. Journal of Virology 72, 651-659.
    [Google Scholar]
  29. Spanjaard, R. A. & van Duin, J. ( 1988; ). Translation of the sequence AGG–AGG yields 50% ribosomal frameshift. Proceedings of the National Academy of Sciences, USA 85, 7967-7971.[CrossRef]
    [Google Scholar]
  30. Steege, D. A. ( 2000; ). Emerging features of mRNA decay in bacteria. RNA 6, 1079-1090.[CrossRef]
    [Google Scholar]
  31. Taniguchi, T., Palmieri, M. & Weissmann, C. ( 1978; ). Qβ DNA-containing hybrid plasmids giving rise to Qβ phage formation in the bacterial host. Nature 274, 223-228.[CrossRef]
    [Google Scholar]
  32. Valegård, K., Liljas, L., Fridborg, K. & Unge, T. ( 1990; ). The three-dimensional structure of the bacterial virus MS2. Nature 345, 36-41.[CrossRef]
    [Google Scholar]
  33. van Duin, J. ( 1988; ). Single-stranded RNA bacteriophages. In The Viruses , pp. 117-167. Edited by H. Fraenkel-Conrat & R. Wagner. New York:Plenum Press.
  34. van Meerten, D., Zelwer, M., Régnier, P. & van Duin, J. ( 1999; ). In vivo oligo(A) insertions in phage MS2: role of Escherichia coli poly(A) polymerase. Nucleic Acids Research 27, 3891-3898.[CrossRef]
    [Google Scholar]
  35. Witherell, G. W., Gott, J. M. & Uhlenbeck, O. C. ( 1991; ). Specific interaction between RNA phage coat proteins and RNA. Progress in Nucleic Acid Research and Molecular Biology 40, 185-220.
    [Google Scholar]
  36. Zuker, M., Mathews, D. H. & Turner, D. H. (1999). Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In RNA Biochemistry and Biotechnology, pp. 11–43. NATO ASI Series. Edited by J. Barciszewski & B. F. C. Clark. Amsterdam: Kluwer Academic.
  37. Zwick, M. B., Shen, J. & Scott, J. K. ( 1998; ). Phage-displayed peptide libraries. Current Opinion in Biotechnology 9, 427-436.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-7-1797
Loading
/content/journal/jgv/10.1099/0022-1317-82-7-1797
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error