1887

Abstract

The potential of RNA-based vaccines was evaluated for the generation of a protective immune response in the mouse model of influenza type A virus infection using the internal nucleoprotein (NP) as antigen. This antigen is of particular interest, since it has the potential to elicit protective cytotoxic T lymphocytes (CTL) against heterologous strains of influenza A virus. In view of the short half-life of RNA, self-replicating RNAs or replicons of the positive-stranded genomes of Semliki Forest virus (SFV) and poliovirus were engineered to synthesize the influenza A virus NP in place of their structural proteins. NP expression was demonstrated by immunoprecipitation after transfection of cells with RNA from the SFV (rSFV-NP) and poliovirus (rΔP1-E-NP) genome-derived replicons transcribed . C57BL/6 mice were injected intramuscularly with these synthetic RNAs in naked form. Both replicons, rSFV-NP and rΔP1-E-NP, induced antibodies against the influenza virus NP, but only mice immunized with the rSFV-NP replicon developed a CTL response against the immunodominant H-2D epitope NP366. Finally, the protective potential of the CTL response induced by immunization of mice with rSFV-NP RNA was demonstrated by the reduction of virus load in the lungs after challenge infection with mouse-adapted influenza A/PR/8/34 virus and was comparable to the protective potential of the response induced by plasmid DNA immunization. These results demonstrate that naked RNA immunization with self-replicating molecules can effectively induce both humoral and cellular immune responses and constitutes an alternative strategy to DNA immunization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-7-1737
2001-07-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/7/0821737a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-7-1737&mimeType=html&fmt=ahah

References

  1. Allan, W., Tabi, Z., Cleary, A. & Doherty, P. C. ( 1990; ). Cellular events in the lymph node and lung of mice with influenza. Consequences of depleting CD4+ T cells. Journal of Immunology 144, 3980-3986.
    [Google Scholar]
  2. Ansardi, D. C., Moldoveanu, Z., Porter, D. C., Walker, D. E., Conry, R. M., LoBuglio, A. F., McPherson, S. & Morrow, C. D. ( 1994; ). Characterization of poliovirus replicons encoding carcinoembryonic antigen. Cancer Research 54, 6359-6364.
    [Google Scholar]
  3. Bot, A., Bot, S., Garcia-Sastre, A. & Bona, C. ( 1996; ). DNA immunization of newborn mice with a plasmid-expressing nucleoprotein of influenza virus. Viral Immunology 9, 207-210.[CrossRef]
    [Google Scholar]
  4. Choi, W. S., Pal-Ghosh, R. & Morrow, C. D. ( 1991; ). Expression of human immunodeficiency virus type 1 (HIV-1) Gag, Pol, and Env proteins from chimeric HIV-1–poliovirus minireplicons. Journal of Virology 65, 2875-2883.
    [Google Scholar]
  5. Conry, R. M., LoBuglio, A. F., Wright, M., Sumerel, L., Pike, M. J., Johanning, F., Benjamin, R., Lu, D. & Curiel, D. T. ( 1995; ). Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Research 55, 1397-1400.
    [Google Scholar]
  6. Corr, M., von Damm, A., Lee, D. J. & Tighe, H. ( 1999; ). In vivo priming by DNA injection occurs predominantly by antigen transfer. Journal of Immunology 163, 4721-4727.
    [Google Scholar]
  7. Crotty, S., Lohman, B. L., Lu, F. X., Tang, S., Miller, C. J. & Andino, R. ( 1999; ). Mucosal immunization of cynomolgus macaques with two serotypes of live poliovirus vectors expressing simian immunodeficiency virus antigens: stimulation of humoral, mucosal, and cellular immunity. Journal of Virology 73, 9485-9495.
    [Google Scholar]
  8. Dalemans, W., Delers, A., Delmelle, C., Denamur, F., Meykens, R., Thiriart, C., Veenstra, S., Francotte, M., Bruck, C. & Cohen, J. ( 1995; ). Protection against homologous influenza challenge by genetic immunization with SFV RNA encoding Flu HA. Annals of the New York Academy of Sciences 772, 255-256.[CrossRef]
    [Google Scholar]
  9. Deitz, S., Dodd, D., Cooper, S., Parham, P. & Kirkegaard, K. ( 2000; ). MHC I-dependent antigen presentation is inhibited by poliovirus protein 3A. Proceedings of the National Academy of Sciences, USA 97, 13790-13795.[CrossRef]
    [Google Scholar]
  10. Doedens, J. R. & Kirkegaard, K. ( 1995; ). Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. EMBO Journal 14, 894-907.
    [Google Scholar]
  11. Endo, A., Itamura, S., Iinuma, H., Funahashi, S., Shida, H., Koide, F., Nerome, K. & Oya, A. ( 1991; ). Homotypic and heterotypic protection against influenza virus infection in mice by recombinant vaccinia virus expressing the haemagglutinin or nucleoprotein of influenza virus. Journal of General Virology 72, 699-703.[CrossRef]
    [Google Scholar]
  12. Escriou, N., Leclerc, C., Gerbaud, S., Girard, M. & van der Werf, S. ( 1995; ). Cytotoxic T cell response to Mengo virus in mice: effector cell phenotype and target proteins. Journal of General Virology 76, 1999-2007.[CrossRef]
    [Google Scholar]
  13. Frolov, I., Hoffman, T. A., Pragai, B. M., Dryga, S. A., Huang, H. V., Schlesinger, S. & Rice, C. M. ( 1996; ). Alphavirus-based expression vectors: strategies and applications. Proceedings of the National Academy of Sciences, USA 93, 11371-11377.[CrossRef]
    [Google Scholar]
  14. Graham, M. B. & Braciale, T. J. ( 1997; ). Resistance to and recovery from lethal influenza virus infection in B lymphocyte-deficient mice. Journal of Experimental Medicine 186, 2063-2068.[CrossRef]
    [Google Scholar]
  15. Hellen, C. U., Lee, C. K. & Wimmer, E. ( 1992; ). Determinants of substrate recognition by poliovirus 2A proteinase. Journal of Virology 66, 3330-3338.
    [Google Scholar]
  16. Kees, U. & Krammer, P. H. ( 1984; ). Most influenza A virus-specific memory cytotoxic T lymphocytes react with antigenic epitopes associated with internal virus determinants. Journal of Experimental Medicine 159, 365-377.[CrossRef]
    [Google Scholar]
  17. Kieny, M. P., Rautmann, G., Schmitt, D., Dott, K., Wain-Hobson, S., Alizon, M., Girard, M., Chamaret, S., Laurent, A., Montagnier, L. & Lecocq, J. P. ( 1986; ). AIDS virus Env protein expressed from a recombinant vaccinia virus. Biotechnology 4, 790-795.[CrossRef]
    [Google Scholar]
  18. Kingsbury, D. W., Jones, I. M. & Murti, K. G. ( 1987; ). Assembly of influenza ribonucleoprotein in vitro using recombinant nucleoprotein. Virology 156, 396-403.[CrossRef]
    [Google Scholar]
  19. Lawson, C. M., Bennink, J. R., Restifo, N. P., Yewdell, J. W. & Murphy, B. R. ( 1994; ). Primary pulmonary cytotoxic T lymphocytes induced by immunization with a vaccinia virus recombinant expressing influenza A virus nucleoprotein peptide do not protect mice against challenge. Journal of Virology 68, 3505-3511.
    [Google Scholar]
  20. Leitner, W. W., Ying, H. & Restifo, N. P. ( 1999; ). DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 18, 765-777.[CrossRef]
    [Google Scholar]
  21. Liljeström, P. & Garoff, H. ( 1991; ). A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology 9, 1356-1361.[CrossRef]
    [Google Scholar]
  22. McMichael, A. J., Gotch, F. M., Noble, G. R. & Beare, P. A. ( 1983; ). Cytotoxic T-cell immunity to influenza. New England Journal of Medicine 309, 13-17.[CrossRef]
    [Google Scholar]
  23. McMinn, P., Carrello, A., Cole, C., Baker, D. & Hampson, A. ( 1999; ). Antigenic drift of influenza A (H3N2) virus in a persistently infected immunocompromised host is similar to that occurring in the community. Clinical Infectious Diseases 29, 456-458.[CrossRef]
    [Google Scholar]
  24. Mandl, S., Sigal, L. J., Rock, K. L. & Andino, R. ( 1998; ). Poliovirus vaccine vectors elicit antigen-specific cytotoxic T cells and protect mice against lethal challenge with malignant melanoma cells expressing a model antigen. Proceedings of the National Academy of Sciences, USA 95, 8216-8221.[CrossRef]
    [Google Scholar]
  25. Marc, D., Drugeon, G., Haenni, A. L., Girard, M. & van der Werf, S. ( 1989; ). Role of myristoylation of poliovirus capsid protein VP4 as determined by site-directed mutagenesis of its N-terminal sequence. EMBO Journal 8, 2661-2668.
    [Google Scholar]
  26. Martinon, F., Krishnan, S., Lenzen, G., Magne, R., Gomard, E., Guillet, J. G., Levy, J. P. & Meulien, P. ( 1993; ). Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. European Journal of Immunology 23, 1719-1722.[CrossRef]
    [Google Scholar]
  27. Moldoveanu, Z., Porter, D. C., Lu, A., McPherson, S. & Morrow, C. D. ( 1995; ). Immune responses induced by administration of encapsidated poliovirus replicons which express HIV-1 gag and envelope proteins. Vaccine 13, 1013-1022.[CrossRef]
    [Google Scholar]
  28. Nichols, W. W., Ledwith, B. J., Manam, S. V. & Troilo, P. J. ( 1995; ). Potential DNA vaccine integration into host cell genome. Annals of the New York Academy of Sciences 772, 30-39.[CrossRef]
    [Google Scholar]
  29. Oukka, M., Manuguerra, J. C., Livaditis, N., Tourdot, S., Riche, N., Vergnon, I., Cordopatis, P. & Kosmatopoulos, K. ( 1996; ). Protection against lethal viral infection by vaccination with nonimmunodominant peptides. Journal of Immunology 157, 3039-3045.
    [Google Scholar]
  30. Parker, C. E. & Gould, K. G. ( 1996; ). Influenza A virus – a model for viral antigen presentation to cytotoxic T lymphocytes. Seminars in Virology 7, 61-73.[CrossRef]
    [Google Scholar]
  31. Percy, N., Barclay, W. S., Sullivan, M. & Almond, J. W. ( 1992; ). A poliovirus replicon containing the chloramphenicol acetyltransferase gene can be used to study the replication and encapsidation of poliovirus RNA. Journal of Virology 66, 5040-5046.
    [Google Scholar]
  32. Porter, D. C., Wang, J., Moldoveanu, Z., McPherson, S. & Morrow, C. D. ( 1997; ). Immunization of mice with poliovirus replicons expressing the C-fragment of tetanus toxin protects against lethal challenge with tetanus toxin. Vaccine 15, 257-264.[CrossRef]
    [Google Scholar]
  33. Qiu, P., Ziegelhoffer, P., Sun, J. & Yang, N. S. ( 1996; ). Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization. Gene Therapy 3, 262-268.
    [Google Scholar]
  34. Rocha, E., Cox, N. J., Black, R. A., Harmon, M. W., Harrison, C. J. & Kendal, A. P. ( 1991; ). Antigenic and genetic variation in influenza A (H1N1) virus isolates recovered from a persistently infected immunodeficient child. Journal of Virology 65, 2340-2350.
    [Google Scholar]
  35. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  36. Sato, Y., Roman, M., Tighe, H., Lee, D., Corr, M., Nguyen, M. D., Silverman, G. J., Lotz, M., Carson, D. A. & Raz, E. ( 1996; ). Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273, 352-354.[CrossRef]
    [Google Scholar]
  37. Stitz, L., Schmitz, C., Binder, D., Zinkernagel, R., Paoletti, E. & Becht, H. ( 1990; ). Characterization and immunological properties of influenza A virus nucleoprotein (NP): cell-associated NP isolated from infected cells or viral NP expressed by vaccinia recombinant virus do not confer protection. Journal of General Virology 71, 1169-1179.[CrossRef]
    [Google Scholar]
  38. Taylor, P. M. & Askonas, B. A. ( 1986; ). Influenza nucleoprotein-specific cytotoxic T-cell clones are protective in vivo. Immunology 58, 417-420.
    [Google Scholar]
  39. Topham, D. J. & Doherty, P. C. ( 1998; ). Clearance of an influenza A virus by CD4+ T cells is inefficient in the absence of B cells. Journal of Virology 72, 882-885.
    [Google Scholar]
  40. Tsuji, M., Bergmann, C. C., Takita-Sonoda, Y., Murata, K., Rodrigues, E. G., Nussenzweig, R. S. & Zavala, F. ( 1998; ). Recombinant Sindbis viruses expressing a cytotoxic T-lymphocyte epitope of a malaria parasite or of influenza virus elicit protection against the corresponding pathogen in mice. Journal of Virology 72, 6907-6910.
    [Google Scholar]
  41. Ulmer, J. B., Donnelly, J. J., Parker, S. E., Rhodes, G. H., Felgner, P. L., Dwarki, V. J., Gromkowski, S. H., Deck, R. R., DeWitt, C. M., Friedman, A. and others ( 1993; ). Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745–1749.[CrossRef]
    [Google Scholar]
  42. Ulmer, J. B., Fu, T. M., Deck, R. R., Friedman, A., Guan, L., DeWitt, C., Liu, X., Wang, S., Liu, M. A., Donnelly, J. J. & Caulfield, M. J. ( 1998; ). Protective CD4+ and CD8+ T cells against influenza virus induced by vaccination with nucleoprotein DNA. Journal of Virology 72, 5648-5653.
    [Google Scholar]
  43. Voeten, J. T., Bestebroer, T. M., Nieuwkoop, N. J., Fouchier, R. A., Osterhaus, A. D. & Rimmelzwaan, G. F. ( 2000; ). Antigenic drift in the influenza A virus (H3N2) nucleoprotein and escape from recognition by cytotoxic T lymphocytes. Journal of Virology 74, 6800-6807.[CrossRef]
    [Google Scholar]
  44. Webster, R. G., Kawaoka, Y., Taylor, J., Weinberg, R. & Paoletti, E. ( 1991; ). Efficacy of nucleoprotein and haemagglutinin antigens expressed in fowlpox virus as vaccine for influenza in chickens. Vaccine 9, 303-308.[CrossRef]
    [Google Scholar]
  45. Wolff, J. A., Ludtke, J. J., Acsadi, G., Williams, P. & Jani, A. ( 1992; ). Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Human Molecular Genetics 1, 363-369.[CrossRef]
    [Google Scholar]
  46. Yamanaka, K., Ishihama, A. & Nagata, K. ( 1990; ). Reconstitution of influenza virus RNA–nucleoprotein complexes structurally resembling native viral ribonucleoprotein cores. Journal of Biological Chemistry 265, 11151-11155.
    [Google Scholar]
  47. Yewdell, J. W., Bennink, J. R., Smith, G. L. & Moss, B. ( 1985; ). Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes. Proceedings of the National Academy of Sciences, USA 82, 1785-1789.[CrossRef]
    [Google Scholar]
  48. Ying, H., Zaks, T. Z., Wang, R. F., Irvine, K. R., Kammula, U. S., Marincola, F. M., Leitner, W. W. & Restifo, N. P. ( 1999; ). Cancer therapy using a self-replicating RNA vaccine. Nature Medicine 5, 823-827.[CrossRef]
    [Google Scholar]
  49. Zhou, X., Berglund, P., Rhodes, G., Parker, S. E., Jondal, M. & Liljeström, P. ( 1994; ). Self-replicating Semliki Forest virus RNA as recombinant vaccine. Vaccine 12, 1510-1514.[CrossRef]
    [Google Scholar]
  50. Zhou, X., Berglund, P., Zhao, H., Liljeström, P. & Jondal, M. ( 1995; ). Generation of cytotoxic and humoral immune responses by nonreplicative recombinant Semliki Forest virus. Proceedings of the National Academy of Sciences, USA 92, 3009-3013.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-7-1737
Loading
/content/journal/jgv/10.1099/0022-1317-82-7-1737
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error