Full text loading...
Abstract
Two neutralizing monoclonal antibodies (MAbs) against canine calicivirus (CaCV), which has a distinct antigenicity from feline calicivirus (FCV), were obtained. Both MAbs recognized conformational epitopes on the capsid protein of CaCV and were used to identify these epitopes. Neutralization-resistant variants of CaCV were selected in the presence of individual MAbs in a cell culture. Cross-neutralization tests using the variants indicated that the MAbs recognized functionally independent epitopes on the capsid protein. Recombinantly expressed ORF2 products (capsid precursors) of the variants showed no reactivity to the MAbs used for the selection, suggesting that the resistance was induced by a failing in binding of the MAbs to the variant capsid proteins. Several nucleotide changes resulting in amino acid substitutions in the capsid protein were found by sequence analysis. Reactivities of the MAbs to the revertant ORF2 products produced from each variant ORF2 by site-directed mutagenesis identified a single amino acid substitution in each variant capsid protein responsible for the failure of MAb binding. The amino acid residues related to forming the conformational neutralizing epitopes were located in regions equivalent to the 5′ and 3′ hypervariable regions of the FCV capsid protein, where antigenic sites were demonstrated in previous studies. The recombinant ORF2 products expressed in bacteria failed to induce neutralizing antibody, suggesting that neutralizing antibodies were only generated when properly folded capsid protein was used as an antigen. In CaCV, the conformational epitopes may play a more important role in neutralization than do linear epitopes.
- Received:
- Accepted:
- Published Online: