1887

Abstract

The N-terminal one-third of the NS3 protein of (DEN-2) complexes with co-factor NS2B to form an active serine proteinase which cleaves the viral polyprotein. To identify sites within NS3 that may interact with NS2B, seven regions within the NS3 proteinase outside the conserved flavivirus enzyme motifs were mutated by alanine replacement. Five sites contained clusters of charged residues and were hydrophilic. Two sites were hydrophobic and highly conserved among flaviviruses. The effects of five mutations on NS2B/3 processing were examined using a COS cell expression system. Four retained significant proteinase activity. Three of these mutations and two more were introduced into genomic-length cDNA and tested for their effects on virus replication. The five mutant viruses showed reduced plaque size and two of the five showed significantly reduced titres. All seven mutations were mapped on the X-ray crystal structure of the DEN-2 NS3 proteinase: three were located at the N terminus and two at the C terminus of the NS2B-binding cleft. Two mutations were at the C terminus of the proteinase domain and one was solvent-exposed. The study demonstrated that charged-to-alanine mutagenesis in the viral proteinase can be used to produce growth-restricted flaviviruses that may be useful in the production of attenuated vaccine strains.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-7-1647
2001-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/7/0821647a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-7-1647&mimeType=html&fmt=ahah

References

  1. Amberg S. M., Rice C. M. 1999; Mutagenesis of the NS2B–NS3-mediated cleavage site in the flavivirus capsid protein demonstrates a requirement for coordinated processing. Journal of Virology 73:8083–8094
    [Google Scholar]
  2. Arias C. F., Preugschat F., Strauss J. H. 1993; Dengue 2 virus NS2B and NS3 form a stable complex that can cleave NS3 within the helicase domain. Virology 193:888–899
    [Google Scholar]
  3. Bass S. H., Mulkerrin M. G., Wells J. A. 1991; A systematic mutational analysis of hormone-binding determinants in the human growth hormone receptor. Proceedings of the National Academy of Sciences, USA 88:4498–4502
    [Google Scholar]
  4. Bazan J. F., Fletterick R. J. 1989; Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virology 171:637–639
    [Google Scholar]
  5. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. 2000; The Protein Data Bank. Nucleic Acids Research 28:235–242
    [Google Scholar]
  6. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F. Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. 1977; The Protein Data Bank. A computer-based archival file for macromolecular structures. European Journal of Biochemistry 80:319–324
    [Google Scholar]
  7. Brinkworth R. I., Fairlie D. P., Leung D., Young P. R. 1999; Homology model of the dengue 2 virus NS3 protease: putative interactions with both substrate and NS2B cofactor. Journal of General Virology 80:1167–1177
    [Google Scholar]
  8. Chambers T. J., Weir R. C., Grakoui A., McCourt D. W., Bazan J. F., Fletterick R. J., Rice C. M. 1990; Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proceedings of the National Academy of Sciences, USA 87:8898–8902
    [Google Scholar]
  9. Chambers T. J., Nestorowicz A., Amberg S. M., Rice C. M. 1993; Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B–NS3 complex formation, and viral replication. Journal of Virology 67:6797–6807
    [Google Scholar]
  10. Chambers T. J., Nestorowicz A., Rice C. M. 1995; Mutagenesis of the yellow fever virus NS2B/3 cleavage site: determinants of cleavage site specificity and effects on polyprotein processing and viral replication. Journal of Virology 69:1600–1605
    [Google Scholar]
  11. Chang G.-J. 1997; Molecular biology of dengue viruses. In Dengue and Dengue Hemorrhagic Fever pp 175–198 Edited by Gubler D. J., Kuno G. Wallingford: CAB International;
    [Google Scholar]
  12. Chen C. J., Kuo M. D., Chien L. J., Hsu S. L., Wang Y. M., Lin J. H. 1997; RNA–protein interactions: involvement of NS3, NS5, and 3′ noncoding regions of Japanese encephalitis virus genomic RNA. Journal of Virology 71:3466–3473
    [Google Scholar]
  13. Cunningham B. C., Wells J. A. 1989; High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244:1081–1085
    [Google Scholar]
  14. Della-Porta A. J., Westaway E. G. 1972; Rapid preparation of hemagglutinins of togaviruses from infected cell culture fluids. Applied Microbiology 23:158–160
    [Google Scholar]
  15. Diamond S. E., Kirkegaard K. 1994; Clustered charged-to-alanine mutagenesis of poliovirus RNA-dependent RNA polymerase yields multiple temperature-sensitive mutants defective in RNA synthesis. Journal of Virology 68:863–876
    [Google Scholar]
  16. Droll D. A., Murthy H. M. K., Chambers T. J. 2000; Yellow fever virus NS2B–NS3 protease: charged-to-alanine mutagenesis and deletion analysis define regions important for protease complex formation and function. Virology 275:335–347
    [Google Scholar]
  17. Failla C., Tomei L., Defrancesco R. 1995; An amino-terminal domain of the hepatitis C virus NS3 protease is essential for interaction with NS4A. Journal of Virology 69:1769–1777
    [Google Scholar]
  18. Falgout B., Pethel M., Zhang Y. M., Lai C. J. 1991; Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. Journal of Virology 65:2467–2475
    [Google Scholar]
  19. Falgout B., Miller R. H., Lai C. J. 1993; Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B–NS3 protease activity. Journal of Virology 67:2034–2042
    [Google Scholar]
  20. Gavin D. K., Young S. M. Jr, Xiao W., Temple B., Abernathy C. R., Pereira D. J., Muzyczka N., Samulski R. J. 1999; Charge-to-alanine mutagenesis of the adeno-associated virus type 2 Rep78/68 proteins yields temperature-sensitive and magnesium-dependent variants. Journal of Virology 73:9433–9445
    [Google Scholar]
  21. Gruenberg A., Wright P. J. 1992; Processing of dengue virus type 2 structural proteins containing deletions in hydrophobic domains. Archives of Virology 122:77–94
    [Google Scholar]
  22. Gualano R. C., Pryor M. J., Cauchi M. R., Wright P. J., Davidson A. D. 1998; Identification of a major determinant of mouse neurovirulence of dengue virus type 2 using stably cloned genomic-length cDNA. Journal of General Virology 79:437–446
    [Google Scholar]
  23. Hahn Y. S., Galler R., Hunkapiller T., Dalrymple J. M., Strauss J. H., Strauss E. G. 1988; Nucleotide sequence of dengue 2 RNA and comparison of the encoded proteins with those of other flaviviruses. Virology 162:167–180
    [Google Scholar]
  24. Halstead S. B. 1988; Pathogenesis of dengue: challenges to molecular biology. Science 239:476–481
    [Google Scholar]
  25. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59
    [Google Scholar]
  26. Huang M., Zensen R., Cho M., Martin M. A. 1998; Construction and characterization of a temperature-sensitive human immunodeficiency virus type 1 reverse transcriptase mutant. Journal of Virology 72:2047–2054
    [Google Scholar]
  27. Irie K., Mohan P. M., Sasaguri Y., Putnak R., Padmanabhan R. 1989; Sequence analysis of cloned dengue virus type 2 genome (New Guinea-C strain). Gene 75:197–211
    [Google Scholar]
  28. Jan L.-R., Yang C.-S., Trent D. W., Falgout B., Lai C.-J. 1995; Processing of Japanese encephalitis virus non-structural proteins: NS2B–NS3 complex and heterologous proteases. Journal of General Virology 76:573–580
    [Google Scholar]
  29. Kapoor M., Zhang L. W., Ramachandra M., Kusukawa J., Ebner K. E., Padmanabhan R. 1995; Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. Journal of Biological Chemistry 270:19100–19106
    [Google Scholar]
  30. Li H. T., Clum S., You S. H., Ebner K. E., Padmanabhan R. 1999; The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. Journal of Virology 73:3108–3116
    [Google Scholar]
  31. Lin C., Thomson J. A., Rice C. M. 1995; A central region in the hepatitis C virus NS4A protein allows formation of an active NS3–NS4A serine proteinase complex in vivo and in vitro . Journal of Virology 69:4373–4380
    [Google Scholar]
  32. Monath T. P. 1994; Dengue: the risk to developed and developing countries. Proceedings of the National Academy of Sciences, USA 91:2395–2400
    [Google Scholar]
  33. Murthy H., Clum S., Padmanabhan R. 1999; Dengue virus NS3 serine protease: crystal structure and insights into interaction of the active site with substrates by molecular modeling and structural analysis of mutational effects. Journal of Biological Chemistry 274:5573–5580
    [Google Scholar]
  34. Muylaert I. R., Galler R., Rice C. M. 1997; Genetic analysis of the yellow fever virus NS1 protein: identification of a temperature-sensitive mutation which blocks RNA accumulation. Journal of Virology 71:291–298
    [Google Scholar]
  35. Nestorowicz A., Chambers T. J., Rice C. M. 1994; Mutagenesis of the yellow fever virus NS2A/2B cleavage site: effects on proteolytic processing, viral replication, and evidence for alternative processing of the NS2A protein. Virology 199:114–123
    [Google Scholar]
  36. Parkin N. T., Chiu P., Coelingh K. L. 1996; Temperature-sensitive mutants of influenza A virus generated by reverse genetics and clustered charged to alanine mutagenesis. Virus Research 46:31–44
    [Google Scholar]
  37. Preugschat F., Yao C. W., Strauss J. H. 1990; In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3. Journal of Virology 64:4364–4374
    [Google Scholar]
  38. Pryor M. J., Wright P. J. 1993; The effects of site-directed mutagenesis on the dimerization and secretion of the NS1 protein specified by dengue virus. Virology 194:769–780
    [Google Scholar]
  39. Pryor M. J., Gualano R. C., Lin B., Davidson A. D., Wright P. J. 1998; Growth restriction of dengue virus type 2 by site-specific mutagenesis of virus-encoded glycoproteins. Journal of General Virology 79:2631–2639
    [Google Scholar]
  40. Rice C. M. 1996; Flaviviridae : The viruses and their replication. In Fields Virology pp 931–959 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  41. Schechter I., Berger A. 1967; On the size of the active site in proteases. I. Papain. Biochemical and Biophysical Research Communications 27:157–162
    [Google Scholar]
  42. Teo K. F., Wright P. J. 1997; Internal proteolysis of the NS3 protein specified by dengue virus 2. Journal of General Virology 78:337–341
    [Google Scholar]
  43. Valle R., Falgout B. 1998; Mutagenesis of the NS3 protease of dengue virus type 2. Journal of Virology 72:624–632
    [Google Scholar]
  44. van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. 2000; Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses San Diego: Academic Press;
    [Google Scholar]
  45. Westaway E. G., Blok J. 1997; Taxonomy and evolutionary relationships of flaviviruses. In Dengue and Dengue Hemorrhagic Fever pp 147–173 Edited by Gubler D. J., Kuno G. Wallingford: CAB International;
    [Google Scholar]
  46. Wiskerchen M., Muesing M. A. 1995; Identification and characterization of a temperature-sensitive mutant of human immunodeficiency virus type 1 by alanine scanning mutagenesis of the integrase gene. Journal of Virology 69:597–601
    [Google Scholar]
  47. Yan Y. W., Li Y., Munshi S., Sardana V., Cole J. L., Sardana M., Steinkuehler C., Tomei L., Defrancesco R., Kuo L. C., Chen Z. G. 1998; Complex of NS3 protease and NS4A peptide of BK strain hepatitis C virus: a 2·2 Å resolution structure in a hexagonal crystal form. Protein Science 7:837–847
    [Google Scholar]
  48. Yusoff R., Clum S., Wetzel M., Murthy H. M. K., Padmanabhan R. 2000; Purified NS2B/NS3 serine proteinase of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. Journal of Biological Chemistry 275:9963–9969
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-7-1647
Loading
/content/journal/jgv/10.1099/0022-1317-82-7-1647
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error