1887

Abstract

The hepatitis C virus (HCV) genome encodes two envelope glycoproteins, E1 and E2. These proteins contain a large N-terminal ectodomain, and are anchored into membranes by their C-terminal transmembrane domain (TMD). The TMDs of HCV envelope proteins are multifunctional. In addition to their role as membrane anchors, they possess a signal sequence function in their C-terminal half, and play a major role in subcellular localization and assembly of these envelope proteins. In this work, the expression of full-length E2 led to secretion of a proportion of this protein, which is likely to be due to inefficient membrane insertion of a fraction of E2 expressed alone. However, when E1 and E2 were coexpressed from the same polyprotein, E2 was not secreted and remained tightly associated with membranes, suggesting that an early interaction between the TMDs of HCV envelope proteins improves the stability of membrane insertion of E2. These results reinforce the hypothesis that the TMDs of E1 and E2 are major factors in the assembly of the HCV envelope glycoprotein complex.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-7-1629
2001-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/7/0821629a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-7-1629&mimeType=html&fmt=ahah

References

  1. Cocquerel L., Meunier J.-C., Pillez A., Wychowski C., Dubuisson J. 1998; A retention signal necessary and sufficient for endoplasmic reticulum localization maps to the transmembrane domain of hepatitis C virus glycoprotein E2. Journal of Virology 72:2183–2191
    [Google Scholar]
  2. Cocquerel L., Duvet S., Meunier J.-C., Pillez A., Cacan R., Wychowski C., Dubuisson J. 1999; The transmembrane domain of hepatitis C virus glycoprotein E1 is a signal for static retention in the endoplasmic reticulum. Journal of Virology 73:2641–2649
    [Google Scholar]
  3. Cocquerel L., Wychowski C., Minner F., Penin F., Dubuisson J. 2000; Charged residues in the transmembrane domains of hepatitis C virus glycoproteins play a key role in the processing, subcellular localization and assembly of these envelope proteins. Journal of Virology 74:3623–3633
    [Google Scholar]
  4. Deleersnyder V., Pillez A., Wychowski C., Blight K., Xu J., Hahn Y. S., Rice C. M., Dubuisson J. 1997; Formation of native hepatitis C virus glycoprotein complexes. Journal of Virology 71:697–704
    [Google Scholar]
  5. Doms R. W. 1990; Oligomerization and protein transport. Methods in Enzymology 191:841–854
    [Google Scholar]
  6. Dubuisson J. 2000; Folding, assembly and subcellular localization of HCV glycoproteins. Current Topics in Microbiology and Immunology 242:135–148
    [Google Scholar]
  7. Dubuisson J., Rice C. M. 1996; Hepatitis C virus glycoprotein folding: disulfide bond formation and association with calnexin. Journal of Virology 70:778–786
    [Google Scholar]
  8. Dubuisson J., Hsu H. H., Cheung R. C., Greenberg H. B., Russell D. G., Rice C. M. 1994; Formation and intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia and Sindbis viruses. Journal of Virology 68:6147–6160
    [Google Scholar]
  9. Dubuisson J., Duvet S., Meunier J. C., Op De Beeck A., Cacan R., Wychowski C., Cocquerel L. 2000; Glycosylation of the hepatitis C virus envelope protein E1 is dependent on the presence of a downstream sequence on the viral polyprotein. Journal of Biological Chemistry 275:30605–30609
    [Google Scholar]
  10. Duvet S., Cocquerel L., Pillez A., Cacan R., Verbert A., Moradpour D., Wychowski C., Dubuisson J. 1998; Hepatitis C virus glycoprotein complex localization in the endoplasmic reticulum involves a determinant for retention and not retrieval. Journal of Biological Chemistry 273:32088–32095
    [Google Scholar]
  11. Flint M., McKeating J. A. 1999; The C-terminal region of the hepatitis C virus E1 glycoprotein confers localization within the endoplasmic reticulum. Journal of General Virology 80:1943–1947
    [Google Scholar]
  12. Flint M., Thomas J. M., Maidens C. M., Shotton C., Levy S., Barclay W. S., McKeating J. A. 1999; Functional analysis of cell surface-expressed hepatitis C virus E2 glycoprotein. Journal of Virology 73:6782–6790
    [Google Scholar]
  13. Fournillier-Jacob A., Cahour A., Escriou N., Girard M., Wychowski C. 1996; Processing of the E1 glycoprotein of hepatitis C virus expressed in mammalian cells. Journal of General Virology 77:1055–1064
    [Google Scholar]
  14. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences, USA 83:8122–8126
    [Google Scholar]
  15. Fujiki Y., Hubbard A. L., Fowler S., Lazarow P. B. 1982; Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. Journal of Cell Biology 93:97–102
    [Google Scholar]
  16. Heinz F. X., Allison S. L. 2000; Structures and mechanisms in flavivirus fusion. Advances in Virus Research 55:231–269
    [Google Scholar]
  17. Hernandez L. D., Hoffman L. R., Wolfsberg T. G., White J. M. 1996; Virus-cell and cell-cell fusion. Annual Review of Cell and Developmental Biology 12:627–661
    [Google Scholar]
  18. Howell K. E., Palade G. E. 1982; Hepatic Golgi fractions resolved into membrane and content subfractions. Journal of Cell Biology 92:822–832
    [Google Scholar]
  19. Konishi E., Pincus S., Paoletti E., Shope R. E., Burrage T., Mason P. W. 1992; Mice immunized with a subviral particle containing the Japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. Virology 188:714–720
    [Google Scholar]
  20. Lin C., Lindenbach B. D., Pragai B. M., McCourt D. W., Rice C. M. 1994; Processing in the hepatitis C virus E2–NS2 region: identification of p7 and two distinct E2-specific products with different C termini. Journal of Virology 68:5063–5073
    [Google Scholar]
  21. Michalak J.-P., Wychowski C., Choukhi A., Meunier J.-C., Ung S., Rice C. M., Dubuisson J. 1997; Characterization of truncated forms of hepatitis C virus glycoproteins. Journal of General Virology 78:2299–2306
    [Google Scholar]
  22. Op De Beeck A., Montserret R., Duvet S., Cocquerel L., Cacan R., Barberot B., Le Maire M., Penin F., Dubuisson J. 2000; Role of the transmembrane domains of hepatitis C virus envelope proteins E1 and E2 in the assembly of the noncovalent E1E2 heterodimer. Journal of Biological Chemistry 275:31428–31437
    [Google Scholar]
  23. Ralston R., Thudium K., Berger K., Kuo C., Gervase B., Hall J., Selby M., Kuo G., Houghton M., Choo Q.-L. 1993; Characterization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia viruses. Journal of Virology 67:6753–6761
    [Google Scholar]
  24. Sakaguchi M. 1997; Mutational analysis of signal-anchor and stop-transfer sequences in membrane proteins. In Membrane Protein Assembly pp 135–150 Edited by von Heijne G. Georgetown, TX: R. G. Landes;
    [Google Scholar]
  25. Selby M. J., Glazer E., Masiarz F., Houghton M. 1994; Complex processing and protein: protein interactions in the E2:NS2 region of HCV. Virology 204:114–122
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-7-1629
Loading
/content/journal/jgv/10.1099/0022-1317-82-7-1629
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error