1887

Abstract

Using a yeast two-hybrid screen of a B-cell cDNA library with an Epstein–Barr nuclear antigen 5 (EBNA5) molecule containing seven repeats of the WW domain as bait, we have isolated the EBNA5-interacting protein HAX-1. HAX-1 has previously been shown to associate with HS1, a protein specifically expressed in cells of the haematopoietic lineage, and is thought to be involved in signal transduction in B-cells. Immunofluorescence experiments showed that HAX-1 co-localized with the hsp60 protein that is associated with the mitochondria in the cell cytoplasm. Pull down experiments with a fusion protein between glutathione -transferase and the seven copy repeat EBNA5 synthesized in bacteria and in yeast cells confirmed that HAX-1 can interact with EBNA5 . Conventionally, EBNA5 is regarded as a nuclear protein. However, we show here that the smallest EBNA5 species, composed of the unique Y domain and only one copy of the WW repeat domain, like HAX-1, co-localizes with the mitochondrial hsp60 protein in the B-cell cytoplasm. Furthermore, immunoprecipitation experiments demonstrate that the single repeat EBNA5 associates with HAX-1 in transfected B-lymphoblastoid cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-7-1581
2001-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/7/0821581a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-7-1581&mimeType=html&fmt=ahah

References

  1. Alfieri C., Birkenbach M., Kieff E. 1991; Early events in Epstein–Barr virus infection of human B lymphocytes. Virology 181:595–608
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Smith J. A., Struhl K. 1996 Current Protocols in Molecular Biology , unit 20.2 New York: John Wiley & Sons;
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Smith J. A., Struhl K. 1997 Current Protocols in Molecular Biology , unit 13.6.2 New York: John Wiley & Sons;
    [Google Scholar]
  4. Ben Bassat H., Goldblum N., Mitrani S., Goldblum T., Yoffey J. M., Cohen M. M., Bentwich Z., Ramot B., Klein E., Klein G. 1977; Establishment in continuous culture of a new type of lymphocyte from a ‘Burkitt like’ malignant lymphoma (line D.G.-75). International Journal of Cancer 19:27–33
    [Google Scholar]
  5. Boyd J. M., Malstrom S., Subramanian T., Venkatesh L. K., Schaeper U., Elangovan B., D’Sa-Eipper C., Chinnadurai G. 1994; Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 79, 341–351:erratum 1120
    [Google Scholar]
  6. Chen G., Ray R., Dubik D., Shi L., Cizeau J., Bleackley R. C., Saxena S., Gietz R. D., Greenberg A. H. 1997; The E1B 19K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. Journal of Experimental Medicine 186:1975–1983
    [Google Scholar]
  7. Cludts I., Farrell P. J. 1998; Multiple functions within the Epstein–Barr virus EBNA-3A protein. Journal of Virology 72:1862–1869
    [Google Scholar]
  8. Dillner J., Kallin B. 1988; The Epstein–Barr virus proteins. Advances in Cancer Research 50:95–158
    [Google Scholar]
  9. Dillner J., Kallin B., Alexander H., Ernberg I., Uno M., Ono Y., Klein G., Lerner R. A. 1986; An Epstein–Barr virus (EBV)-determined nuclear antigen (EBNA5) partly encoded by the transformation-associated Bam WYH region of EBV DNA: preferential expression in lymphoblastoid cell lines. Proceedings of the National Academy of Sciences, USA 83:6641–6645
    [Google Scholar]
  10. Finke J., Rowe M., Kallin B., Ernberg I., Rosén A., Dillner J., Klein G. 1987; Monoclonal and polyclonal antibodies against Epstein–Barr virus nuclear antigen 5 (EBNA-5) detect multiple protein species in Burkitt’s lymphoblastoid cell lines. Journal of Virology 61:3870–3878
    [Google Scholar]
  11. Fukuda T., Kitamura D., Taniuchi I., Maekawa Y., Benhamou L. E., Sarthou P., Watanabe T. 1995; Restoration of surface IgM-mediated apoptosis in an anti-IgM-resistant variant of WEHI-231 lymphoma cells by HS1, a protein-tyrosine kinase substrate. Proceedings of the National Academy of Sciences, USA 92:7302–7306
    [Google Scholar]
  12. Gallagher A. R., Cedzich A., Gretz N., Somlo S., Witzgall R. 2000; The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskeleton. Proceedings of the National Academy of Sciences, USA 97:4017–4022
    [Google Scholar]
  13. Harada S., Kieff E. 1997; Epstein–Barr nuclear protein LP stimulates EBNA-2 acidic domain mediated transcriptional activation. Journal of Virology 71:6611–6618
    [Google Scholar]
  14. Hess J. L., Korsmeyer S. J. 1998; Life, death and nuclear spots. Nature Genetics 20:220–222
    [Google Scholar]
  15. Inman G. J., Farrell P. J. 1995; Epstein–Barr virus EBNA-LP and transcription regulation of pRB, p107 and p53 in transfection assays. Journal of General Virology 76:2141–2149
    [Google Scholar]
  16. Kawaguchi Y., Nakajima K., Igarashi M., Morita T., Tanaka M., Suzuki M., Yokoyama A., Matsuda G., Kato K., Kanamori M., Hirai K. 2000; Interaction of Epstein–Barr virus nuclear antigen leader protein (EBNA-LP) with HS1-associated protein X-1: implication of cytoplasmic function of EBNA-LP. Journal of Virology 74:10104–10111
    [Google Scholar]
  17. Kieff E. 1996; Epstein–Barr virus and its replication. In Fields Virology pp 2343–2396 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  18. Kitay M. K., Rowe D. T. 1996a; Cell cycle stage-specific phosphorylation of the Epstein–Barr virus immortalization protein EBNA-LP. Journal of Virology 70:7885–7893
    [Google Scholar]
  19. Kitay M. K., Rowe D. T. 1996b; Protein–protein interactions between Epstein–Barr nuclear antigen-LP and cellular gene products: binding of 70-kilodalton heat shock proteins. Virology 220:91–99
    [Google Scholar]
  20. Mannick J. B., Tong X., Hemnes A., Kieff E. 1995; The Epstein–Barr nuclear antigen leader protein associates with hsp72/hsc73. Journal of Virology 69:8169–8172
    [Google Scholar]
  21. Matera A. G. 1999; Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends in Cell Biology 9:302–309
    [Google Scholar]
  22. Nitsche F., Bell A., Rickinson A. 1997; Epstein–Barr leader protein enhances EBNA-2 mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain. Journal of Virology 71:6619–6627
    [Google Scholar]
  23. Peng R., Tan J., Ling P. D. 2000; Conserved regions in the Epstein–Barr virus leader protein define distinct domains required for nuclear localization and transcriptional cooperation with EBNA2. Journal of Virology 74:9953–9963
    [Google Scholar]
  24. Sinclair A. J., Ignacio P., Peters G., Farrell P. 1994; EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein–Barr virus. EMBO Journal 13:3321–3328
    [Google Scholar]
  25. Soltys B. J., Gupta R. S. 1996; Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Experimental Cell Research 222:16–27
    [Google Scholar]
  26. Suzuki Y., Demoliere C., Kitamura D., Takeshita H., Deuschle U., Watanabe T. 1997; HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases. Journal of Immunology 158:2736–2744
    [Google Scholar]
  27. Szekely L., Selivanova G., Magnusson K. P., Klein G., Wiman K. G. 1993; EBNA-5, an Epstein–Barr virus encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proceedings of the National Academy of Sciences, USA 90:5455–5459
    [Google Scholar]
  28. Szekely L., Jiang W.-Q., Pokrovskaja K., Wiman K. G., Klein G., Ringertz N. 1995a; Reversible nucleolar translocation of Epstein–Barr virus-encoded EBNA-5 and hsp70 proteins after exposure to heat shock or cell density congestion. Journal of General Virology 76:2423–2432
    [Google Scholar]
  29. Szekely L., Pokrovskaja K., Jiang W.-Q., Selivanova G., Löwbeer M., Ringertz N., Wiman K. G., Klein G. 1995b; Resting B-cells, EBV-infected B-blasts and established lymphoblastoid cell lines differ in their Rb, p53 and EBNA-5 expression patterns. Oncogene 10:1869–1874
    [Google Scholar]
  30. Szekely L., Pokrovskaja K., Jiang W.-Q., de The H., Ringertz N., Klein G. 1996; The Epstein–Barr virus-encoded nuclear antigen EBNA-5 accumulates in PML-containing bodies. Journal of Virology 70:2562–2568
    [Google Scholar]
  31. Taniuchi I., Kitamura D., Maekawa Y., Fukuda T., Kishi H., Watanabe T. 1995; Antigen-receptor induced clonal expansion and deletion of lymphocytes are impaired in mice lacking HS1 protein, a substrate of the antigen-receptor-coupled tyrosine kinases. EMBO Journal 14:3664–3678
    [Google Scholar]
  32. Yamanashi Y., Fukuda T., Nishizumi H., Inazu T., Higashi K., Kitamura D., Ishida T., Yamamura H., Watanabe T., Yamamoto T. 1997; Role of tyrosine phosphorylation of HS1 in B cell antigen receptor-mediated apoptosis. Journal of Experimental Medicine 185:1387–1392
    [Google Scholar]
  33. Yasuda M., Theodorakis P., Subramanian T., Chinnadurai G. 1998; Adenovirus E1B-19K/BCL-2 interacting protein BNIP3 contains a BH3 domain and a mitochondrial targeting sequence. Journal of Biological Chemistry 273:12415–12421
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-7-1581
Loading
/content/journal/jgv/10.1099/0022-1317-82-7-1581
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error