1887

Abstract

JC virus (JCV) causes progressive multifocal leukoencephalopathy, a demyelinating disease in brains of individuals with AIDS. Previous work has shown that the Tat protein, encoded by human immunodeficiency virus type 1 (HIV-1), can interact with cellular protein Purα to enhance both TAR-dependent HIV-1 transcription and JCV late gene transcription. Tat has been shown to activate JCV transcription through interaction with Purα, which binds to promoter sequence elements near the JCV origin of replication. DNA footprinting has shown that Purα and large T-antigen cooperatively interact at several binding sites in the origin and transcriptional control region. Overexpression of Purα inhibits replication initiated at the JCV origin by T-antigen. In transfected glial cells Tat reversed this inhibition and enhanced DNA replication. In an replication system maximal activation by Tat, more than sixfold the levels achieved with T-antigen alone, was achieved in the presence of Purα. Effects of mutant Tat proteins on both activation of replication and binding to Purα have revealed that Cys22 exerts a conformational effect that affects both activities. The origin of an archetypal strain of JCV was less susceptible to activation of replication by Tat relative to the rearranged Mad-1 strain. These results have revealed a previously undocumented role for Tat in DNA replication and have indicated a regulatory role for JCV origin auxiliary sequences in replication and activation by Tat.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-7-1543
2001-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/7/0821543a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-7-1543&mimeType=html&fmt=ahah

References

  1. Amirhaeri S., Wohlrab F., Major E. O., Wells R. D. 1988; Unusual DNA structure in the regulatory region of the human papovavirus JC virus. Journal of Virology 62:922–931
    [Google Scholar]
  2. Ault G. S. 1997; Activity of JC virus archetype and PML-type regulatory regions in glial cells. Journal of General Virology 78:163–169
    [Google Scholar]
  3. Bagasra O., Lavi E., Bobroski L., Khalili K., Pestaner J. P., Tawadros R., Pomerantz R. J. 1996; Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS 10:573–585
    [Google Scholar]
  4. Barr S. M., Johnson E. M. 2001; Ras-induced colony formation and anchorage-independent growth inhibited by elevated expression of Pur-alpha in NIH3T3 cells. Journal of Cellular Biochemistry 81:621–638
    [Google Scholar]
  5. Bergemann A. D., Ma Z.-W., Johnson E. M. 1992; Sequence of cDNA comprising the human pur gene and sequence-specific single-stranded-DNA-binding properties of the encoded protein. Molecular and Cellular Biology 12:5673–5682
    [Google Scholar]
  6. Berger J. R., Major E. O. 1999; Progressive multifocal leukoencephalopathy. Seminars in Neurology 19:193–200
    [Google Scholar]
  7. Berger J. R., Kaszovitz B., Post M. J., Dickinson G. 1987; Progressive multifocal leukoencephalopathy associated with human immunodeficiency virus infection. A review of the literature with a report of sixteen cases. Annals of Internal Medicine 107:78–87
    [Google Scholar]
  8. Berkhout B., Silverman R. H., Jeang K.-T. 1989; Tat trans- activates the human immunodeficiency virus through a nascent RNA target. Cell 59:273–282
    [Google Scholar]
  9. Chang C.-F., Tada H., Khalili K. 1994; The role of a pentanucleotide repeat sequence, AGGGAAGGGA, in the regulation of JC virus DNA replication. Gene 148:309–314
    [Google Scholar]
  10. Chang C. F., Gallia G., Muralidharan V., Chen N. N., Zoltick P., Johnson E. M., Khalili K. 1996; Evidence that replication of human neurotropic JC virus DNA in glial cells is regulated by a sequence-specific single-stranded DNA-binding protein Pur α . Journal of Virology 70:4150–4156
    [Google Scholar]
  11. Chen N. N., Chang C.-F., Gallia G. L., Kerr D. A., Johnson E. M., Krachmarov C. P., Barr S. M., Frisque R. J., Bollag B., Khalili K. 1995; Cooperative action of cellular proteins YB-1 and Purα with the tumor antigen of the human JC polymovirus determines their interaction with the viral lytic control element. Proceedings of the National Academy of Sciences, USA 92:1087–1091
    [Google Scholar]
  12. Chepenik L. G., Tretiakova A. P., Krachmarov C. P., Johnson E. M., Khalili K. 1998; The single-stranded DNA binding protein, Pur-alpha, binds HIV-1 TAR RNA and activates HIV-1 transcription. Gene 210:37–44
    [Google Scholar]
  13. Chowdhury M., Kundu M., Khalili K. 1993; GA/GC-rich sequence confers Tat responsiveness to human neurotropic virus promoter, JCVL, in cells derived from central nervous system. Oncogene 8:887–892
    [Google Scholar]
  14. Churcher M. J., Lamont C., Hamy F., Dingwall C., Green S. M., Lowe A. D., Butler P.-J. G., Gait M. J., Karn J. 1993; High affinity binding of TAR RNA by the human immunodeficiency virus type-1 tat protein requires base-pairs in the RNA stem and amino acid residues flanking the basic region. Journal of Molecular Biology 230:90–110
    [Google Scholar]
  15. Daniel D. C., Johnson E. M. 1989; Selective initiation of replication at origin sequences of the rDNA molecule of Physarum polycephalum using synchronous plasmodial extracts. Nucleic Acids Research 17:8343–8362
    [Google Scholar]
  16. Desai K., Loewenstein P. M., Green M. 1991; Isolation of a cellular protein that binds to the human immunodeficiency virus Tat protein and can potentiate transactivation of the viral promoter. Proceedings of the National Academy of Sciences, USA 88:8875–8879
    [Google Scholar]
  17. Dingwall C., Ernberg I., Gait M. J., Green S. M., Heaphy S., Karn J., Lowe A. D., Singh M., Skinner M. A. 1990; HIV-1 tat protein stimulates transcription by binding to a U-rich bulge in the stem of the TAR RNA structure. EMBO Journal 9:4145–4153
    [Google Scholar]
  18. Ensoli B., Barillari G., Salahuddin S. Z., Gallo R. C., Wong-Staal F. 1990; Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 345:84–86
    [Google Scholar]
  19. Ensoli B., Buonaguro L., Barillari G., Fiorelli V., Gendelman R., Morgan R. A., Wingfield P., Gallo R. C. 1993; Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein in cell growth and viral transactivation. Journal of Virology 67:277–287
    [Google Scholar]
  20. Ezhevsky S. A., Nagahara H., Vocero-Akbani A. M., Gius D. R., Wei M. C., Dowdy S. F. 1997; Hypo-phosphorylation of the retinoblastoma protein (pRb) by cyclin D: Cdk4/6 complexes results in active pRb. Proceedings of the National Academy of Sciences, USA 94:10699–10704
    [Google Scholar]
  21. Frankel A. D., Pabo C. O. 1988; Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 55:1189–1193
    [Google Scholar]
  22. Frisque R. J., Bream G. L., Cannella M. T. 1984; Human polyomavirus JC virus genome. Journal of Virology 51:458–469
    [Google Scholar]
  23. Gallia G. L., Safak M., Khalili K. 1998; Interaction of the single-stranded DNA-binding protein Puralpha with the human polyomavirus JC virus early protein T-antigen. Journal of Biological Chemistry 273:32662–32669
    [Google Scholar]
  24. Gallia G. L., Darbinian N., Tretiakova A., Ansari S., Ansari S. A., Rappaport J., Brady J., Wortman M. J., Johnson E. M., Khalili K. 1999a; RNA-dependent interaction between the cellular protein Purα and the HIV-1 protein Tat. Proceedings of the National Academy of Sciences, USA 96:11572–11577
    [Google Scholar]
  25. Gallia G. L., Darbinian N., Tretiakova A., Ansari S., Rappaport J., Wortman M. J., Johnson E. M., Brady J. N., Khalili K. 1999b; Association of HIV-1 Tar with the cellular protein, Pur-alpha, is mediated by RNA. Proceedings of the National Academy of Sciences, USA 96:11572–11577
    [Google Scholar]
  26. Gutierrez C., Guo Z. S., Roberts J., DePamphilis M. L. 1990; Simian virus 40 origin auxiliary sequences weakly facilitate T-antigen binding but strongly facilitate DNA unwinding. Molecular and Cellular Biology 10:1719–1728
    [Google Scholar]
  27. Hamy F., Asseline U., Grasby J., Iwai S., Pritchard C., Slim G., Butler P.-J. G., Karn J., Gait M. J. 1993; Hydrogen-bonding contacts in the major groove are required for human immunodeficiency virus type-1 tat protein recognition of TAR RNA. Journal of Molecular Biology 230:111–123
    [Google Scholar]
  28. He Z., Brinton B. T., Greenblatt J., Hassell J. A., Ingles C. J. 1993; The transactivator proteins VP16 and GAL4 bind replication factor A. Cell 73:1223–1232
    [Google Scholar]
  29. Herault Y., Chatelain G., Brun G., Michel D. 1995; RNA-dependent DNA binding activity of the Pur factor, potentially involved in DNA replication and gene transcription. Gene Expression 4:85–93
    [Google Scholar]
  30. Hirt B. 1967; Selective extraction of polyoma DNA from infected mouse cell cultures. Journal of Molecular Biology 26:365–369
    [Google Scholar]
  31. Hofman F. M., Wright A. D., Dohadwala D. F., Wong-Staal F., Walker S. M. 1993; Exogenous tat protein activates human endothelial cells. Blood 82:2774–2780
    [Google Scholar]
  32. Inamoto S., Segil N., Pan Z. Q., Kimura M., Roeder R. G. 1997; The cyclin-dependent kinase-activating kinase (CAK) assembly factor, MAT1, targets and enhances CAK activity on the POU domains of octamer transcription factors. Journal of Biological Chemistry 272:29852–29858
    [Google Scholar]
  33. Itoh H., Wortman M. J., Kanovsky M., Uson R. R., Gordon R. E., Alfano N., Johnson E. M. 1998; Alterations in Purα levels and intracellular localization in the CV-1 cell cycle. Cell Growth & Differentiation 9:651–665
    [Google Scholar]
  34. Jeang K.-T., Chun R., Lin N. H., Gatignol A., Glabe C. G., Fan H. 1993; In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor. Journal of Virology 67:6224–6233
    [Google Scholar]
  35. Johnson E. M., Jelinek W. R. 1986; Replication of a plasmid bearing a human Alu-family repeat in monkey COS7 cells. Proceedings of the National Academy of Sciences, USA 83:4660–4664
    [Google Scholar]
  36. Johnson E. M., Chen P.-L., Krachmarov C. P., Barr S., Ma Z.-W., Lee W.-H. 1995; Association of human Purα with the retinoblastoma protein, Rb, regulates binding to the Purα single-stranded DNA recognition element. Journal of Biological Chemistry 270:24352–24360
    [Google Scholar]
  37. Kamine J., Loewenstein P., Green M. 1991; Mapping of HIV-1 Tat protein sequences required for binding to Tar RNA. Virology 182:570–577
    [Google Scholar]
  38. Kashanchi F., Piras G., Radonovich M. F., Duvall J. F., Fattaey A., Chiang C.-M., Roeder R. G., Brady J. N. 1994; Direct interaction of human TFIID with the HIV-1 transactivator Tat. Nature 367:295–299
    [Google Scholar]
  39. Keen N. J., Gait M. J., Karn J. 1996; Human immunodeficiency virus type-1 Tat is an integral component of the activated transcription–elongation complex. Proceedings of the National Academy of Sciences, USA 93:2505–2510
    [Google Scholar]
  40. Kobayashi S., Agui K., Kamo S., Li Y., Anzai K. 2000; Neural BC1 RNA associates with pur alpha, a single-stranded DNA and RNA binding protein, which is involved in the transcription of the BC1 RNA gene. Biochemical and Biophysical Research Communications 277:341–347
    [Google Scholar]
  41. Krachmarov C. P., Chepenik L. G., Barr-Vagell S., Khalili K., Johnson E. M. 1996; Activation of the JC virus Tat-responsive transcriptional control element by association of the Tat protein of human immunodeficiency virus 1 with cellular protein Pur alpha. Proceedings of the National Academy of Sciences, USA 93:14112–14117 erratum 94, 9571
    [Google Scholar]
  42. Li R., Botchan M. R. 1993; The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Cell 73:1207–1221
    [Google Scholar]
  43. Li J. J., Kelly T. J. 1984; Simian virus 40 DNA replication in vitro. Proceedings of the National Academy of Sciences, USA 81:6973–6977
    [Google Scholar]
  44. Luo Y., Madore S. J., Parslow T. G., Cullen B. R., Peterlin B. M. 1993; Functional analysis of interactions between Tat and the trans - activation response element of human immunodeficiency virus type 1 in cells. Journal of Virology 67:5617–5622
    [Google Scholar]
  45. Lynch K. J., Frisque R. J. 1990; Identification of critical elements within the JC virus DNA replication origin. Journal of Virology 64:5812–5822
    [Google Scholar]
  46. Lynch K. J., Frisque R. J. 1991; Factors contributing to the restricted DNA replicating activity of JC virus. Virology 180:306–317
    [Google Scholar]
  47. Major E. O., Amemiya K., Tornatore C. S., Houff S. A., Berger J. R. 1992; Pathogenesis and molecular biology of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clinical Microbiology Reviews 5:49–73
    [Google Scholar]
  48. Mancebo H. S., Lee G., Flygare J., Tomassini J., Luu P., Zhu Y., Peng J., Blau C., Hazuda D., Price D., Flores O. 1997; P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes & Development 11:2633–2644
    [Google Scholar]
  49. Nesper J., Smith R. W., Kautz A. R., Sock E., Wegner M., Grummt F., Nasheuer H. P. 1997; A cell-free replication system for human polyomavirus JC DNA. Journal of Virology 71:7421–7428
    [Google Scholar]
  50. Newman J. T., Frisque R. J. 1997; Detection of archetype and rearranged variants of JC virus in multiple tissues from a pediatric PML patient. Journal of Medical Virology 52:243–252
    [Google Scholar]
  51. Ohana B., Moore P. A., Ruben S. M., Southgate C. D., Green M. R., Rosen C. A. 1993; The type 1 human immunodeficiency virus Tat binding protein is a transcriptional activator belonging to an additional family of evolutionarily conserved genes. Biochemistry 90:138–142
    [Google Scholar]
  52. Parada C. A., Roeder R. G. 1996; Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 384:375–378
    [Google Scholar]
  53. Rhim H., Echetebu C. O., Herrmann C. H., Rice A. P. 1994; Wild-type and mutant HIV-1 and HIV-2 tat proteins expressed in Escherichia coli as fusions with glutathione S -transferase. Journal of Acquired Immune Deficiency Syndromes 7:1116–1121
    [Google Scholar]
  54. Schwarze S. R., Ho A., Vocero-Akbani A., Dowdy S. F. 1999; In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572
    [Google Scholar]
  55. Shahabuddin M., Bentsman G., Volsky B., Rodriguez I., Volsky D. J. 1996; A mechanism of restricted human immunodeficiency virus type 1 expression in human glial cells. Journal of Virology 70:7992–8002
    [Google Scholar]
  56. Stacey D. W., Hitomi M., Kanovsky M., Gan L., Johnson E. M. 1999; Cell cycle arrest and morphological alterations following microinjection of NIH3T3 cells with Pur alpha. Oncogene 18:4254–4261
    [Google Scholar]
  57. Stoner G. L., Ryschkewitsch C. F., Walker D. L., Webster H. D. 1986; JC papovavirus large tumor (T)-antigen expression in brain tissue of acquired immune deficiency syndrome (AIDS) and non-AIDS patients with progressive multifocal leukoencephalopathy. Proceedings of the National Academy of Sciences, USA 83:2271–2275
    [Google Scholar]
  58. Tada H., Rappaport J., Lashgari M., Amini S., Wong-Staal F., Khalili K. 1990; Trans-activation of the JC-virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells. Proceedings of the National Academy of Sciences, USA 87:3479–3483
    [Google Scholar]
  59. Taylor J. P., Pomerantz R. J., Raj G. V., Kashanchi F., Brady J. N., Amini S., Khalili K. 1994; Central nervous system-derived cells express a kappa B-binding activity that enhances human immunodeficiency virus type 1 transcription in vitro and facilitates TAR-independent transactivation by Tat. Journal of Virology 68:3971–3981
    [Google Scholar]
  60. Tornatore C. S., Chandra R., Berger J. R., Major E. O. 1994; HIV-1 infection of subcortical astrocytes in the pediatric central nervous system. Neurology 44:481–487
    [Google Scholar]
  61. Tretiakova A., Gallia G. L., Shcherbik N., Jameson B., Johnson E. M., Amini S., Khalili K. 1998; Association of Puralpha with RNAs homologous to 7 SL determines its binding ability to the myelin basic protein promoter DNA sequence. Journal of Biological Chemistry 273:22241–22247
    [Google Scholar]
  62. Vazeux R., Cumont M., Girard P. M., Nassif X., Trotot P., Marche C., Matthiessen L., Vedrenne C., Mikol J., Henin D. and others 1990; Severe encephalitis resulting from coinfections with HIV and JC virus. Neurology 40:944–948
    [Google Scholar]
  63. Wei P., Garber M. E., Fang S. M., Fischer W. H., Jones K. A. 1998; A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92:451–462
    [Google Scholar]
  64. Wortman M. J., Krachmarov C. P., Kim J. H., Gordon R. G., Chepenik L. G., Brady N. N., Gallia G. L., Khalili K., Johnson E. M. 2000; Interaction of HIV Tat with Pur-alpha in nuclei of human glial cells: characterization of RNA-mediated protein–protein binding. Journal of Cellular Biochemistry 77:65–74
    [Google Scholar]
  65. Yu L., Zhang Z., Loewenstein P. M., Desai K., Tang Q., Mao D., Symington J. S., Green M. 1995; Molecular cloning and characterization of a cellular protein that interacts with the human immunodeficiency virus type 1 Tat transactivator and encodes a strong transcriptional activation domain. Journal of Virology 69:3007–3016
    [Google Scholar]
  66. ZuRhein G. M., Chou S. M. 1965; Particles resembling papovavirions in human cerebral demyelinating disease. Science 148:1477–1479
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-7-1543
Loading
/content/journal/jgv/10.1099/0022-1317-82-7-1543
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error