Defining CAR as a cellular receptor for the avian adenovirus CELO using a genetic analysis of the two viral fibre proteins Free

Abstract

The coxsackievirus and adenovirus receptor (CAR) is a high affinity receptor used by adenoviruses, including adenovirus type 5 (Ad5). The adenovirus fibre molecule bears the high affinity cell binding domain of Ad5, allowing virions to attach to CAR. The avian adenovirus CELO displays two fibre molecules on its capsid and it was logical to expect that the cell binding functions of CELO might also reside in one or both of these fibres. We had previously shown that the cell binding properties of CELO resemble Ad5, suggesting that the two viruses use similar receptors. Experiments with CAR-deficient CHO cells and CHO cells modified to express CAR demonstrated that CELO has CAR-dependent transduction behaviour like Ad5. Mutations were introduced into the CELO genome to disrupt either the long fibre 1 or the short fibre 2. A CELO genome with fibre 2 disrupted did not generate virus, demonstrating that fibre 2 is essential for some stage in virus growth, assembly or spread. However, a CELO genome with disrupted fibre 1 gene produced virus (CELOdF1) that was capable of entering chicken cells, but had lost both the ability to efficiently transduce human cells and the CAR-specific transduction displayed by wild-type CELO. The ability of CELOdF1 to transduce chicken cells suggests that CELOdF1 may still bind, probably via fibre 2, to a receptor expressed on avian but not mammalian cells. CELOdF1 replication was dramatically impaired in chicken embryos, demonstrating that fibre 1 is important for the biology of CELO.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-6-1465
2001-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/6/0821465a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-6-1465&mimeType=html&fmt=ahah

References

  1. Baker A., Saltik M., Lehrmann H., Killisch I., Mautner V., Lamm G., Christofori G., Cotten M. 1997; Polyethylenimine (PEI) is a simple, inexpensive and effective reagent for condensing and linking plasmid DNA to adenovirus for gene delivery. Gene Therapy 4:773–782
    [Google Scholar]
  2. Bergelson J. M. 1999; Receptors mediating adenovirus attachment and internalization. Biochemical Pharmacology 57:975–979
    [Google Scholar]
  3. Bergelson J. M., Cunningham J. A., Droguett G., Kurt-Jones E. A., Krithivas A., Hong J. S., Horwitz M. S., Crowell R. L., Finberg R. W. 1997; Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323
    [Google Scholar]
  4. Bergelson J. M., Krithivas A., Celi L., Droguett G., Horwitz M. S., Wickham T., Crowell R. L., Finberg R. W. 1998; The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. Journal of Virology 72:415–419
    [Google Scholar]
  5. Bewley M. C., Springer K., Zhang Y. B., Freimuth P., Flanagan J. M. 1999; Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286:1579–1583
    [Google Scholar]
  6. Chillon M., Bosch A., Zabner J., Law L., Armentano D., Welsh M. J., Davidson B. L. 1999; Group D adenoviruses infect primary central nervous system cells more efficiently than those from group C. Journal of Virology 73:2537–2540
    [Google Scholar]
  7. Chiocca S., Kurzbauer R., Schaffner G., Baker A., Mautner V., Cotten M. 1996; The complete DNA sequence and genomic organization of the avian adenovirus CELO. Journal of Virology 70:2939–2949
    [Google Scholar]
  8. Davison A. J., Telford E. A., Watson M. S., McBride K., Mautner V. 1993; The DNA sequence of adenovirus type 40. Journal of Molecular Biology 234:1308–1316
    [Google Scholar]
  9. Dechecchi M. C., Tamanini A., Bonizzato A., Cabrini G. 2000; Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2–host cell interactions. Virology 268:382–390
    [Google Scholar]
  10. Defer C., Belin M. T., Caillet-Boudin M. L., Boulanger P. 1990; Human adenovirus–host cell interactions: comparative study with members of subgroups B and C. Journal of Virology 64:3661–3673
    [Google Scholar]
  11. Fechner H., Haack A., Wang H., Wang X., Eizema K., Pauschinger M., Schoemaker R., Veghel R., Houtsmuller A., Schultheiss H. P., Lamers J., Poller W. 1999; Expression of coxsackie adenovirus receptor and alpha v-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Therapy 6:1520–1535
    [Google Scholar]
  12. Freimuth P., Springer K., Berard C., Hainfeld J., Bewley M., Flanagan J. 1999; Coxsackievirus and adenovirus receptor amino-terminal immunoglobulin V-related domain binds adenovirus type 2 and fiber knob from adenovirus type 12. Journal of Virology 73:1392–1398
    [Google Scholar]
  13. Gelderblom H., Maichle-Lauppe I. 1982; The fibers of fowl adenoviruses. Archives of Virology 72:289–298
    [Google Scholar]
  14. Graham F. L., Smiley J., Russell W. C., Nairn R. 1977; Characteristics of a human cell line transformed by DNA from human adenovirus type 5. Journal of General Virology 36:59–72
    [Google Scholar]
  15. Hemmi S., Geertsen R., Mezzacasa A., Peter I., Dummer R. 1998; The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Human Gene Therapy 9:2363–2373
    [Google Scholar]
  16. Hess M., Cuzange A., Ruigrok R. W., Chroboczek J., Jacrot B. 1995; The avian adenovirus penton: two fibres and one base. Journal of Molecular Biology 252:379–385
    [Google Scholar]
  17. Hong S. S., Karayan L., Tournier J., Curiel D. T., Boulanger P. A. 1997; Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO Journal 16:2294–2306
    [Google Scholar]
  18. Kawaguchi T., Nomura K., Hirayama Y., Kitagawa T. 1987; Establishment and characterization of a chicken hepatocellular carcinoma cell line, LMH. Cancer Research 47:4460–4464
    [Google Scholar]
  19. Kidd A. H., Chroboczek J., Cusack S., Ruigrok R. W. 1993; Adenovirus type 40 virions contain two distinct fibers. Virology 192:73–84
    [Google Scholar]
  20. Kirby I., Davison E., Beavil A. J., Soh C. P., Wickham T. J., Roelvink P. W., Kovesdi I., Sutton B. J., Santis G. 1999; Mutations in the DG loop of adenovirus type 5 fiber knob protein abolish high-affinity binding to its cellular receptor CAR. Journal of Virology 73:9508–9514
    [Google Scholar]
  21. Kirby I., Davison E., Beavil A. J., Soh C. P., Wickham T. J., Roelvink P. W., Kovesdi I., Sutton B. J., Santis G. 2000; Identification of contact residues and definition of the CAR-binding site of adenovirus type 5 fiber protein. Journal of Virology 74:2804–2813
    [Google Scholar]
  22. Laver W. G., Younghusband H. B., Wrigley N. G. 1971; Purification and properties of chick embryo lethal orphan virus (an avian adenovirus). Virology 45:598–614
    [Google Scholar]
  23. Li Y., Pong R. C., Bergelson J. M., Hall M. C., Sagalowsky A. I., Tseng C. P., Wang Z., Hsieh J. T. 1999a; Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Research 59:325–330
    [Google Scholar]
  24. Li D., Duan L., Freimuth P., O’Malley B. W. 1999b; Variability of adenovirus receptor density influences gene transfer efficiency and therapeutic response in head and neck cancer. Clinical Cancer Research 5:4175–4181
    [Google Scholar]
  25. McDonald D., Stockwin L., Matzow T., Zajdel M. B., Blair G. 1999; Coxsackie and adenovirus receptor (CAR)-dependent and major histocompatibility complex (MHC) class I-independent uptake of recombinant adenoviruses into human tumour cells. Gene Therapy 6:1512–1519
    [Google Scholar]
  26. McFerran J. B., Adair B. M. 1977; Avian adenoviruses – a review. Avian Pathology 6:189–217
    [Google Scholar]
  27. Michou A. I., Lehrmann H., Saltik M., Cotten M. 1999; Mutational analysis of the avian adenovirus CELO, which provides a basis for gene delivery vectors. Journal of Virology 73:1399–1410
    [Google Scholar]
  28. Nalbantoglu J., Pari G., Karpati G., Holland P. C. 1999; Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells. Human Gene Therapy 10:1009–1019
    [Google Scholar]
  29. Nemerow G. R., Stewart P. L. 1999; Role of alpha(v) integrins in adenovirus cell entry and gene delivery. Microbiology and Molecular Biology Reviews 63:725–734
    [Google Scholar]
  30. Pearson A. S., Koch P. E., Atkinson N., Xiong M., Finberg R. W., Roth J. A., Fang B. 1999; Factors limiting adenovirus-mediated gene transfer into human lung and pancreatic cancer cell lines. Clinical Cancer Research 5:4208–4213
    [Google Scholar]
  31. Pickles R. J., Fahrner J. A., Petrella J. M., Boucher R. C., Bergelson J. M. 2000; Retargeting the coxsackievirus and adenovirus receptor to the apical surface of polarized epithelial cells reveals the glycocalyx as a barrier to adenovirus-mediated gene transfer. Journal of Virology 74:6050–6057
    [Google Scholar]
  32. Rebel V. I., Hartnett S., Denham J., Chan M., Finberg R., Sieff C. A. 2000; Maturation and lineage-specific expression of the coxsackie and adenovirus receptor in hematopoietic cells. Stem Cells 18:176–182
    [Google Scholar]
  33. Roelvink P. W., Lizonova A., Lee J. G., Li Y., Bergelson J. M., Finberg R. W., Brough D. E., Kovesdi I., Wickham T. J. 1998; The coxsackievirus–adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. Journal of Virology 72:7909–7915
    [Google Scholar]
  34. Roelvink P. W., Lee G. M., Einfeld D. A., Kovesdi I., Wickham T. J. 1999; Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 286:1568–1571
    [Google Scholar]
  35. Santis G., Legrand V., Hong S. S., Davison E., Kirby I., Imler J.-L., Finberg R. W., Bergelson J. M., Mehtali M., Boulanger P. 1999; Molecular determinants of adenovirus serotype 5 fibre binding to its cellular receptor CAR. Journal of General Virology 80:1519–1527
    [Google Scholar]
  36. Schachtner S., Buck C., Bergelson J., Baldwin H. 1999; Temporally regulated expression patterns following in utero adenovirus-mediated gene transfer. Gene Therapy 6:1249–1257
    [Google Scholar]
  37. Shayakhmetov D. M., Papayannopoulou T., Stamatoyannopoulos G., Lieber A. 2000; Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. Journal of Virology 74:2567–2583
    [Google Scholar]
  38. Tomko R. P., Xu R., Philipson L. 1997; HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proceedings of the National Academy of Sciences, USA 94:3352–3356
    [Google Scholar]
  39. Tomko R. P., Johansson C. B., Totrov M., Abagyan R., Frisen J., Philipson L. 2000; Expression of the adenovirus receptor and its interaction with the fiber knob. Experimental Cell Research 255:47–55
    [Google Scholar]
  40. Turturro F., Seth P., Link C. J. 2000; In vitro adenoviral vector p53-mediated transduction and killing correlates with expression of coxsackie–adenovirus receptor and alpha(nu)beta5 integrin in SUDHL-1 cells derived from anaplastic large-cell lymphoma. Clinical Cancer Research 6:185–192
    [Google Scholar]
  41. van Raaij M. J., Louis N., Chroboczek J., Cusack S. 1999; Structure of the human adenovirus serotype 2 fiber head domain at 1·5 Å resolution. Virology 262:333–343
    [Google Scholar]
  42. Walters R. W., Grunst T., Bergelson J. M., Finberg R. W., Welsh M. J., Zabner J. 1999; Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. Journal of Biological Chemistry 274:10219–10226
    [Google Scholar]
  43. Zabner J., Chillon M., Grunst T., Moninger T. O., Davidson B. L., Gregory R., Armentano D. 1999; A chimeric type 2 adenovirus vector with a type 17 fiber enhances gene transfer to human airway epithelia. Journal of Virology 73:8689–8695
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-6-1465
Loading
/content/journal/jgv/10.1099/0022-1317-82-6-1465
Loading

Data & Media loading...

Most cited Most Cited RSS feed