Reversion of a live porcine reproductive and respiratory syndrome virus vaccine investigated by parallel mutations Free

Abstract

A live attenuated porcine reproductive and respiratory syndrome (PRRS) vaccine virus has been shown to revert to virulence under field conditions. In order to identify genetic virulence determinants, ORF1 from the attenuated vaccine virus and three Danish vaccine-derived field isolates was sequenced and compared with the parental strain of the vaccine virus (VR2332). This revealed five mutations that had occurred independently in all three vaccine-derived field isolates, indicating strong parallel selective pressure on these positions in the vaccine virus when used in swine herds. Two of these parallel mutations were direct reversions to the parental VR2332 sequence and were situated in a papain-like cysteine protease domain and in the helicase domain. The remaining parallel mutations might be seen as second-site compensatory mutations for one or more of the mutations that accumulated in the vaccine virus sequence during cell-culture adaptation. Evaluation of the remaining mutations in the ORF1 sequence revealed stronger selective pressure for amino acid conservation during spread in pigs than during vaccine production. Furthermore, it was found that the selective pressure did not change during the time period studied. The implications of these findings for PRRS vaccine attenuation and reversion are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-6-1263
2001-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/6/0821263a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-6-1263&mimeType=html&fmt=ahah

References

  1. Allende R., Lewis T. L., Lu Z., Rock D. L., Kutish G. F., Ali A., Doster A. R., Osorio F. A. 1999; North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. Journal of General Virology 80:307–315
    [Google Scholar]
  2. Allende R., Kutish G. F., Laegréid W., Lu Z., Lewis T. L., Rock D. L., Friesen J., Galeota J. A., Doster A. R., Osorio F. A. 2000; Mutations in the genome of porcine reproductive and respiratory syndrome virus responsible for the attenuation phenotype. Archives of Virology 145:1149–1161
    [Google Scholar]
  3. Bøtner A., Strandbygaard B., Sørensen K. J., Have P., Madsen K. G., Madsen E. S., Alexandersen S. 1997; Appearance of acute PRRS-like symptoms in sow herds after vaccination with a modified live PRRS vaccine. Veterinary Record 141:497–499
    [Google Scholar]
  4. Bøtner A., Nielsen J., Oleksiewicz M. B., Storgaard T. 1999; Heterologous challenge with porcine reproductive and respiratory syndrome (PRRS) vaccine virus: no evidence of reactivation of previous European-type PRRS virus infection. Veterinary Microbiology 68:187–195
    [Google Scholar]
  5. Christensen L. S., Medveczky I., Strandbygaard B. S., Pejsak Z. 1992; Characterization of field isolates of suid herpesvirus 1 (Aujeszky’s disease virus) as derivatives of attenuated vaccine strains. Archives of Virology 124:225–234
    [Google Scholar]
  6. Chumakov K. M., Norwood L. P., Parker M. L., Dragunsky E. M., Ran Y. X., Levenbook I. S. 1992; RNA sequence variants in live poliovirus vaccine and their relation to neurovirulence. Journal of Virology 66:966–970
    [Google Scholar]
  7. Cizman M., Mozetic M., Radescek-Rakar R., Pleterski-Rigler D., Susec-Michieli M. 1989; Aseptic meningitis after vaccination against measles and mumps. Pediatric Infectious Disease Journal 8:302–308
    [Google Scholar]
  8. Collins J. E., Benfield D. A., Christianson W. T., Harris L., Hennings J. C., Shaw D. P., Goyal S. M., McCullough S., Morrison R. B., Joo H. S. and others 1992; Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs. Journal of Veterinary Diagnostic Investigation 4:117–126
    [Google Scholar]
  9. Crill W. D., Wichman H. A., Bull J. J. 2000; Evolutionary reversals during viral adaptation to alternating hosts. Genetics 154:27–37
    [Google Scholar]
  10. Den Boon J. A., Faaberg K. S., Meulenberg J. J., Wassenaar A. L., Plagemann P. G., Gorbalenya A. E., Snijder E. J. 1995; Processing and evolution of the N-terminal region of the arterivirus replicase ORF1a protein: identification of two papainlike cysteine proteases. Journal of Virology 69:4500–4505
    [Google Scholar]
  11. Goldman N. 1993; Simple diagnostic statistical tests of models for DNA substitution. Journal of Molecular Evolution 37:650–661
    [Google Scholar]
  12. Goldman N., Yang Z. 1994; A codon-based model of nucleotide substitution for protein-coding DNA sequences. Molecular Biology and Evolution 11:725–736
    [Google Scholar]
  13. Gorbalenya A. E., Koonin E. V. 1993; Helicases: amino acid sequence comparisons and structure–function relationships. Current Opinion in Structural Biology 3:419–429
    [Google Scholar]
  14. Grantham R. 1974; Amino acid difference formula to help explain protein evolution. Science 185:862–864
    [Google Scholar]
  15. Hasegawa M., Kishino H., Yano T. 1985; Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22:160–174
    [Google Scholar]
  16. Hogue C. W. 1997; Cn3D: a new generation of three-dimensional molecular structure viewer. Trends in Biochemical Sciences 22:314–316
    [Google Scholar]
  17. Huang W., Hussey M., Michel F. 1999; Transmission of varicella to a gravida via close contacts immunized with varicella-zoster vaccine: a case report. Journal of Reproductive Medicine 44:905–907
    [Google Scholar]
  18. Kadaré G., Haenni A.-L. 1997; Virus-encoded RNA helicases. Journal of Virology 71:2583–2590
    [Google Scholar]
  19. Kinney R. M., Chang G. J., Tsuchiya K. R., Sneider J. M., Roehrig J. T., Woodward T. M., Trent D. W. 1993; Attenuation of Venezuelan equine encephalitis virus strain TC-83 is encoded by the 5′-noncoding region and the E2 envelope glycoprotein. Journal of Virology 67:1269–1277
    [Google Scholar]
  20. Korolev S., Hsieh J., Gauss G. H., Lohman T. M., Waksman G. 1997; Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90:635–647
    [Google Scholar]
  21. Madsen K. G., Hansen C. M., Madsen E. S., Strandbygaard B., Bøtner A., Sørensen K. J. 1998; Sequence analysis of porcine reproductive and respiratory syndrome virus of the American type collected from Danish swine herds. Archives of Virology 143:1683–1700
    [Google Scholar]
  22. Mengeling W. L., Vorwald A. C., Lager K. M., Brockmeier S. L. 1996; Comparison among strains of porcine reproductive and respiratory syndrome virus for their ability to cause reproductive failure. American Journal of Veterinary Research 57:834–839
    [Google Scholar]
  23. Meulenberg J. J. M., Hulst M. M., De Meijer E. J., Moonen P. L. J. M., Den Besten A., De Kluyver E. P., Wensvoort G., Moormann R. J. M. 1993; Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology 192:62–72
    [Google Scholar]
  24. Minor P. D. 1993; Attenuation and reversion of the Sabin vaccine strains of poliovirus. Developments in Biological Standardization 78:17–26
    [Google Scholar]
  25. Minor P. D., Macadam A., Cammack N., Dunn G., Almond J. W. 1990; Molecular biology and the control of viral vaccines. FEMS Microbiology Immunology 2:207–213
    [Google Scholar]
  26. Mortensen S., Thomsen L. K., Buch H. N., Ruby V., Nyby-Pedersen P., Willeberg P. 1998; Adverse effects of the IngelvacTM PRRS modified live vaccine on sow productivity in herds infected with porcine reproductive and respiratory syndrome virus. In Proceedings of the 15th International Pig Veterinary Society Congress pp 128 Edited by Done S., Thomson J., Varley M. Nottingham: Nottingham University Press;
    [Google Scholar]
  27. Nelsen C. J., Murtaugh M. P., Faaberg K. S. 1999; Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. Journal of Virology 73:270–280
    [Google Scholar]
  28. Ni H., Chang G.-J. J., Xie H., Trent D. W., Barrett A. D. T. 1995; Molecular basis of attenuation of neurovirulence of wild-type Japanese encephalitis virus strain SA14. Journal of General Virology 76:409–413
    [Google Scholar]
  29. Nielsen J., Bøtner A., Oleksiewicz M., Storgaard T. 1998; Experimental inoculation of late-term pregnant sows with a field isolate of PRRS vaccine-like virus. In Proceedings of the 15th International Pig Veterinary Society Congress pp 127 Edited by Done S., Thomson J., Varley M. Nottingham: Nottingham University Press;
    [Google Scholar]
  30. Nielsen H. S., Storgaard T., Oleksiewicz M. B. 2000; Analysis of ORF1 in European porcine reproductive and respiratory syndrome virus by long RT–PCR and restriction fragment length polymorphism (RFLP) analysis. Veterinary Microbiology 76:221–228
    [Google Scholar]
  31. Oleksiewicz M. B., Bøtner A., Madsen K. G., Storgaard T. 1998; Sensitive detection and typing of porcine reproductive and respiratory syndrome virus by RT–PCR amplification of whole viral genes. Veterinary Microbiology 64:7–22
    [Google Scholar]
  32. Oleksiewicz M. B., Bøtner A., Nielsen J., Storgaard T. 1999; Determination of 5′-leader sequences from radically disparate strains of porcine reproductive and respiratory syndrome virus reveals the presence of highly conserved sequence motifs. Archives of Virology 144:981–987
    [Google Scholar]
  33. Oleksiewicz M. B., Bøtner A., Toft P., Grubbe T., Nielsen J., Kamstrup S., Storgaard T. 2000; Emergence of porcine reproductive and respiratory syndrome virus deletion mutants: correlation with the porcine antibody response to a hypervariable site in the ORF 3 structural glycoprotein. Virology 267:135–140
    [Google Scholar]
  34. Rost B. 1996; PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods in Enzymology 266:525–539
    [Google Scholar]
  35. Snijder E. J., Meulenberg J. J. M. 1998; The molecular biology of arteriviruses. Journal of General Virology 79:961–979
    [Google Scholar]
  36. Storgaard T., Oleksiewicz M., Bøtner A. 1999; Examination of the selective pressures on a live PRRS vaccine virus. Archives of Virology 144:2389–2401
    [Google Scholar]
  37. Swofford D. L. 2000 PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  38. Xie H., Cass A. R., Barrett A. D. 1998; Yellow fever 17D vaccine virus isolated from healthy vaccinees accumulates very few mutations. Virus Research 55:93–99
    [Google Scholar]
  39. Yang Z. 1993; Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution 10:1396–1401
    [Google Scholar]
  40. Yang Z. 1997; PAML: a program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences 13:555–556
    [Google Scholar]
  41. Yang Z. 1998; Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Molecular Biology and Evolution 15:568–573
    [Google Scholar]
  42. Yang Z., Nielsen R. 1998; Synonymous and nonsynonymous rate variation in nuclear genes of mammals. Journal of Molecular Evolution 46:409–418
    [Google Scholar]
  43. Yuan S., Nelsen C. J., Murtaugh M. P., Schmitt B. J., Faaberg K. S. 1999; Recombination between North American strains of porcine reproductive and respiratory syndrome virus. Virus Research 61:87–98
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-6-1263
Loading
/content/journal/jgv/10.1099/0022-1317-82-6-1263
Loading

Data & Media loading...

Most cited Most Cited RSS feed