Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex Free

Abstract

The replicase polyproteins of equine arteritis virus (EAV; family , order ) are processed by three viral proteases to yield 12 non-structural proteins (nsps). The nsp2 and nsp3 cleavage products have previously been found to interact, a property that allows nsp2 to act as a co-factor in the processing of the downstream part of the polyprotein by the nsp4 protease. Remarkably, upon infection of Vero cells, but not of BHK-21 or RK-13 cells, EAV nsp2 is now shown to be subject to an additional, internal, cleavage. In Vero cells, approximately 50% of nsp2 (61 kDa) was cleaved into an 18 kDa N-terminal part and a 44 kDa C-terminal part, most likely by a host cell protease that is absent in BHK-21 and RK-13 cells. Although the functional consequences of this additional processing step are unknown, the experiments in Vero cells revealed that the C-terminal part of nsp2 interacts with nsp3. Most EAV nsps localize to virus-induced double-membrane structures in the perinuclear region of the infected cell, where virus RNA synthesis takes place. It is now shown that, in an expression system, the co-expression of nsp2 and nsp3 is both necessary and sufficient to induce the formation of double-membrane structures that strikingly resemble those found in infected cells. Thus, the nsp2 and nsp3 cleavage products play a crucial role in two processes that are common to positive-strand RNA viruses that replicate in mammalian cells: controlled proteolysis of replicase precursors and membrane association of the virus replication complex.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-5-985
2001-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/5/0820985a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-5-985&mimeType=html&fmt=ahah

References

  1. Bredenbeek P. J., Frolov I., Rice C. M., Schlesinger S. 1993; Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. Journal of Virology 67:6439–6446
    [Google Scholar]
  2. Carette J. E., Stuiver M., Van Lent J., Wellink J., Van Kammen A. 2000; Cowpea mosaic virus infection induces a massive proliferation of endoplasmic reticulum but not Golgi membranes and is dependent on de novo membrane synthesis. Journal of Virology 74:6556–6563
    [Google Scholar]
  3. Cavanagh D. 1997; Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Archives of Virology 142:629–633
    [Google Scholar]
  4. Chen J., Ahlquist P. 2000; Brome mosaic virus polymerase-like protein 2a is directed to the endoplasmic reticulum by helicase-like viral protein 1a. Journal of Virology 74:4310–4318
    [Google Scholar]
  5. den Boon J. A., Snijder E. J., Chirnside E. D., de Vries A. A. F., Horzinek M. C., Spaan W. J. M. 1991; Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. Journal of Virology 65:2910–2920
    [Google Scholar]
  6. de Vries A. A. F., Chirnside E. D., Horzinek M. C., Rottier P. J. M. 1992; Structural proteins of equine arteritis virus. Journal of Virology 66:6294–6303
    [Google Scholar]
  7. Doll E. R., Bryans J. T., McCollum W. H., Crowe M. E. W. 1957; Isolation of a filterable agent causing arteritis of horses and abortion by mares. Its differentiation from the equine abortion (influenza) virus. Cornell Veterinarian 47:3–41
    [Google Scholar]
  8. Egger D., Teterina N., Ehrenfeld E., Bienz K. 2000; Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis. Journal of Virology 74:6570–6580
    [Google Scholar]
  9. Lai M. M. C., Cavanagh D. 1997; The molecular biology of coronaviruses. Advances in Virus Research 48:1–100
    [Google Scholar]
  10. Mackenzie J. M., Jones M. K., Westaway E. G. 1999; Markers for trans-Golgi membranes and the intermediate compartment localize to induced membranes with distinct replication functions in flavivirus-infected cells. Journal of Virology 73:9555–9567
    [Google Scholar]
  11. Pedersen K. W., van der Meer Y., Roos N., Snijder E. J. 1999; Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. Journal of Virology 73:2016–2026
    [Google Scholar]
  12. Ryan M. D., Monaghan S., Flint M. 1998; Virus-encoded proteinases of the Flaviviridae . Journal of General Virology 79:947–959
    [Google Scholar]
  13. Schaad M. C., Jensen P. E., Carrington J. C. 1997; Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO Journal 16:4049–4059
    [Google Scholar]
  14. Schlegel A., Giddings T. H. Jr, Ladinsky M. S., Kirkegaard K. 1996; Cellular origin and ultrastructure of membranes induced during poliovirus infection. Journal of Virology 70:6576–6588
    [Google Scholar]
  15. Seybert A., van Dinten L. C., Snijder E. J., Ziebuhr J. 2000; Biochemical characterization of the equine arteritis virus helicase suggests a close functional relationship between arterivirus and coronavirus helicases. Journal of Virology 74:9586–9593
    [Google Scholar]
  16. Snijder E. J., Meulenberg J. J. M. 1998; The molecular biology of arteriviruses. Journal of General Virology 79:961–979
    [Google Scholar]
  17. Snijder E. J., Wassenaar A. L. M., Spaan W. J. M. 1992; The 5’ end of the equine arteritis virus replicase gene encodes a papainlike cysteine protease. Journal of Virology 66:7040–7048
    [Google Scholar]
  18. Snijder E. J., Wassenaar A. L. M., Spaan W. J. M. 1994; Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. Journal of Virology 68:5755–5764
    [Google Scholar]
  19. Snijder E. J., Wassenaar A. L. M., Spaan W. J. M., Gorbalenya A. E. 1995; The arterivirus Nsp2 protease. An unusual cysteine protease with primary structure similarities to both papain-like and chymotrypsin-like proteases. Journal of Biological Chemistry 270:16671–16676
    [Google Scholar]
  20. Snijder E. J., Wassenaar A. L. M., van Dinten L. C., Spaan W. J. M., Gorbalenya A. E. 1996; The arterivirus nsp4 protease is the prototype of a novel group of chymotrypsin-like enzymes, the 3C-like serine proteases. Journal of Biological Chemistry 271:4864–4871
    [Google Scholar]
  21. van der Meer Y., van Tol H., Krijnse Locker J., Snijder E. J. 1998; ORF1a-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex. Journal of Virology 72:6689–6698
    [Google Scholar]
  22. van der Meer Y., Snijder E. J., Dobbe J. C., Schleich S., Denison M. R., Spaan W. J. M., Krijnse Locker J. 1999; Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. Journal of Virology 73:7641–7657
    [Google Scholar]
  23. van Dinten L. C., Wassenaar A. L. M., Gorbalenya A. E., Spaan W. J. M., Snijder E. J. 1996; Processing of the equine arteritis virus replicase ORF1b protein: identification of cleavage products containing the putative viral polymerase and helicase domains. Journal of Virology 70:6625–6633
    [Google Scholar]
  24. van Dinten L. C., den Boon J. A., Wassenaar A. L. M., Spaan W. J. M., Snijder E. J. 1997; An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proceedings of the National Academy of Sciences, USA 94:991–996
    [Google Scholar]
  25. van Dinten L. C., Rensen S., Gorbalenya A. E., Snijder E. J. 1999; Proteolytic processing of the open reading frame 1b-encoded part of arterivirus replicase is mediated by nsp4 serine protease and is essential for virus replication. Journal of Virology 73:2027–2037
    [Google Scholar]
  26. van Dinten L. C., van Tol H., Gorbalenya A. E., Snijder E. J. 2000; The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis. Journal of Virology 74:5213–5223
    [Google Scholar]
  27. Vaux D., Tooze J., Fuller S. 1990; Identification by anti-idiotype antibodies of an intracellular membrane protein that recognizes a mammalian endoplasmic reticulum retention signal. Nature 345:495–502
    [Google Scholar]
  28. Wassenaar A. L. M., Spaan W. J. M., Gorbalenya A. E., Snijder E. J. 1997; Alternative proteolytic processing of the arterivirus replicase ORF1a polyprotein: evidence that NSP2 acts as a cofactor for the NSP4 serine protease. Journal of Virology 71:9313–9322
    [Google Scholar]
  29. Zentgraf H., Frey M., Schwinn S., Tessmer C., Willemann B., Samstag Y., Velhagen I. 1995; Detection of histidine-tagged fusion proteins by using a high-specific mouse monoclonal anti-histidine tag antibody. Nucleic Acids Research 23:3347–3348
    [Google Scholar]
  30. Ziebuhr J., Snijder E. J., Gorbalenya A. E. 2000; Virus-encoded proteinases and proteolytic processing in the Nidovirales . Journal of General Virology 81:853–879
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-5-985
Loading
/content/journal/jgv/10.1099/0022-1317-82-5-985
Loading

Data & Media loading...

Most cited Most Cited RSS feed