1887
Preview this article:
Zoom in
Zoomout

Functional interactions in internal translation initiation directed by viral and cellular IRES elements, Page 1 of 1

| /docserver/preview/fulltext/jgv/82/5/0820973a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-5-973
2001-05-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/5/0820973a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-5-973&mimeType=html&fmt=ahah

References

  1. Ali, N. & Siddiqui, A. ( 1997; ). The La antigen binds 5’ noncoding region of the hepatitis C virus RNA in the context of the initiator AUG codon and stimulates internal ribosome entry site-mediated translation. Proceedings of the National Academy of Sciences, USA 94, 2249-2254.[CrossRef]
    [Google Scholar]
  2. Allen, E., Wang, S. & Miller, W. A. ( 1999; ). Barley yellow dwarf virus RNA requires a cap-independent translation sequence because it lacks a 5’ cap. Virology 253, 139-144.[CrossRef]
    [Google Scholar]
  3. Andino, R., Boddeker, N., Silvera, D. & Gamarnik, A. V. ( 1999; ). Intracellular determinants of picornavirus replication. Trends in Microbiology 7, 76-82.[CrossRef]
    [Google Scholar]
  4. Beck, E., Forss, S., Strebel, K., Cattaneo, R. & Feil, G. ( 1983; ). Structure of the FMDV translation initiation site and of the structural proteins. Nucleic Acids Research 11, 7873-7885.[CrossRef]
    [Google Scholar]
  5. Belsham, G. J. & Jackson, R. J. ( 2000; ). Translation initiation on picornavirus RNA. In Translational Control of Gene Expression , pp. 869-900. Edited by N. Sonenberg, J. W. B. Hershey & M. B. Mathews. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  6. Berlioz, C. & Darlix, J. L. ( 1995; ). An internal ribosomal entry mechanism promotes translation of murine leukemia virus gag polyprotein precursors. Journal of Virology 69, 2214-2222.
    [Google Scholar]
  7. Bernstein, J., Sella, O., Le, S. Y. & Elroy-Stein, O. ( 1997; ). PDGF2/c-sis mRNA leader contains a differentiation-linked internal ribosomal entry site (D-IRES). Journal of Biological Chemistry 272, 9356-9362.[CrossRef]
    [Google Scholar]
  8. Blyn, L. B., Towner, J. S., Semler, B. L. & Ehrenfeld, E. ( 1997; ). Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. Journal of Virology 71, 6243-6246.
    [Google Scholar]
  9. Bolten, R., Egger, D., Gosert, R., Schaub, G., Landmann, L. & Bienz, K. ( 1998; ). Intracellular localization of poliovirus plus- and minus-strand RNA visualized by strand-specific fluorescent in situ hybridization. Journal of Virology 72, 8578-8585.
    [Google Scholar]
  10. Borman, A. M. & Kean, K. M. ( 1997; ). Intact eukaryotic initiation factor 4G is required for hepatitis A virus internal initiation of translation. Virology 237, 129-136.[CrossRef]
    [Google Scholar]
  11. Borman, A. M., Deliat, F. G. & Kean, K. M. ( 1994; ). Sequences within the poliovirus internal ribosome entry segment control viral RNA synthesis. EMBO Journal 13, 3149-3157.
    [Google Scholar]
  12. Buratti, E., Tisminetzky, S., Zotti, M. & Baralle, F. E. ( 1998; ). Functional analysis of the interaction between HCV 5’UTR and putative subunits of eukaryotic translation initiation factor eIF3. Nucleic Acids Research 26, 3179-3187.[CrossRef]
    [Google Scholar]
  13. Cao, X., Bergman, I. E., Füllkrug, R. & Beck, E. ( 1995; ). Functional analysis of the two alternative translation initiation sites of foot-and-mouth disease virus. Journal of Virology 69, 560-563.
    [Google Scholar]
  14. Carrasco, L. ( 1995; ). Modification of membrane permeability by animal viruses. Advances in Virus Research 45, 61-112.
    [Google Scholar]
  15. Carter, M. S., Kuhn, K. M. & Sarnow, P. ( 2000; ). Cellular internal ribosome entry site elements and the use of cDNA microarrays in their investigation. In Translational Control of Gene Expression , pp. 615-636. Edited by N. Sonenberg, J. W. B. Hershey & M. B. Mathews. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  16. Chappell, S. A., Edelman, G. M. & Mauro, V. P. ( 2000a; ). A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proceedings of the National Academy of Sciences, USA 97, 1536-1541.[CrossRef]
    [Google Scholar]
  17. Chappell, S. A., LeQuesne, J. P., Paulin, F. E., deSchoolmeester, M. L., Stoneley, M., Soutar, R. L., Ralston, S. H., Helfrich, M. H. & Willis, A. E. ( 2000b; ). A mutation in the c-myc-IRES leads to enhanced internal ribosome entry in multiple myeloma: a novel mechanism of oncogene de-regulation. Oncogene 19, 4437-4440.[CrossRef]
    [Google Scholar]
  18. Clemens, M. J., Bushell, M., Jeffrey, I. W., Pain, V. M. & Morley, S. J. ( 2000; ). Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells. Cell Death and Differentiation 7, 603-615.[CrossRef]
    [Google Scholar]
  19. Coldwell, M. J., Mitchell, S. A., Stoneley, M., MacFarlane, M. & Willis, A. E. ( 2000; ). Initiation of Apaf-1 translation by internal ribosome entry. Oncogene 19, 899-905.[CrossRef]
    [Google Scholar]
  20. Collier, A. J., Tang, S. & Elliott, R. M. ( 1998; ). Translation efficiencies of the 5’ untranslated region from representatives of the six major genotypes of hepatitis C virus using a novel bicistronic reporter assay system. Journal of General Virology 79, 2359-2366.
    [Google Scholar]
  21. Conte, M. R., Grune, T., Ghuman, J., Kelly, G., Ladas, A., Matthews, S. & Curry, S. ( 2000; ). Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold. EMBO Journal 19, 3132-3141.[CrossRef]
    [Google Scholar]
  22. Cornelis, S., Bruynooghe, Y., Denecker, G., Van Huffel, S., Tinton, S. & Beyaert, R. ( 2000; ). Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Molecular Cell 5, 597-605.[CrossRef]
    [Google Scholar]
  23. Craig, A. W. B., Haghighat, A., Yu, A. T. K. & Sonenberg, N. ( 1998; ). Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature 392, 520-523.[CrossRef]
    [Google Scholar]
  24. Creancier, L., Morello, D., Mercier, P. & Prats, A. C. ( 2000; ). Fibroblast growth factor 2 internal ribosome entry site (IRES) activity ex vivo and in transgenic mice reveals a stringent tissue-specific regulation. Journal of Cell Biology 150, 275-281.[CrossRef]
    [Google Scholar]
  25. Cuesta, R., Laroia, G. & Schneider, R. J. ( 2000; ). Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes & Development 14, 1460-1470.
    [Google Scholar]
  26. Drew, J. & Belsham, G. J. ( 1994; ). trans complementation by RNA of defective foot-and-mouth disease virus internal ribosome entry site elements. Journal of Virology 68, 697-703.
    [Google Scholar]
  27. Fukushi, S., Okada, M., Kageyama, T., Hoshino, F. B. & Katayama, K. ( 1999; ). Specific interaction of a 25-kilodalton cellular protein, a 40S ribosomal subunit protein, with the internal ribosome entry site of hepatitis C virus genome. Virus Genes 19, 153-161.[CrossRef]
    [Google Scholar]
  28. Gallie, D. R. ( 1991; ). The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes & Development 5, 2108-2116.[CrossRef]
    [Google Scholar]
  29. Gamarnik, A. V. & Andino, R. ( 1997; ). Two functional complexes formed by KH domain containing proteins with the 5’ noncoding region of poliovirus RNA. RNA 3, 882-892.
    [Google Scholar]
  30. Gamarnik, A. V. & Andino, R. ( 2000; ). Interactions of viral protein 3CD and Poly(rC) binding protein with the 5’ untranslated region of the poliovirus genome. Journal of Virology 74, 2219-2226.[CrossRef]
    [Google Scholar]
  31. Gingras, A.-C., Svitkin, Y., Belsham, G. J., Pause, A. & Sonenberg, N. ( 1996; ). Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proceedings of the National Academy of Sciences, USA 93, 5578-5583.[CrossRef]
    [Google Scholar]
  32. Gingras, A. C., Raught, B. & Sonenberg, N. ( 1999; ). eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annual Review of Biochemistry 68, 913-963.[CrossRef]
    [Google Scholar]
  33. Gradi, A., Svitkin, Y. V., Imataka, H. & Sonenberg, N. ( 1998; ). Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proceedings of the National Academy of Sciences, USA 95, 11089-11094.[CrossRef]
    [Google Scholar]
  34. Hahm, B., Kim, Y. K., Kim, J. H., Kim, T. Y. & Jang, S. K. ( 1998; ). Heterogeneous nuclear ribonucleoprotein L interacts with the 3’ border of the internal ribosomal entry site of hepatitis C virus. Journal of Virology 72, 8782-8788.
    [Google Scholar]
  35. Haller, A. A. & Semler, B. L. ( 1992; ). Linker scanning mutagenesis of the internal ribosome entry site of poliovirus RNA. Journal of Virology 66, 5075-5086.
    [Google Scholar]
  36. Hellen, C. U. T., Pestova, T. V. & Wimmer, E. ( 1994; ). Effect of mutations downstream of the internal ribosome entry site on initiation of poliovirus protein synthesis. Journal of Virology 68, 6312-6322.
    [Google Scholar]
  37. Henis-Korenblit, S., Strumpf, N. L., Goldstaub, D. & Kimchi, A. ( 2000; ). A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation. Molecular and Cellular Biology 20, 496-506.[CrossRef]
    [Google Scholar]
  38. Hershey, J. W. B. & Merrick, W. C. ( 2000; ). Pathway and mechanism of initiation of protein synthesis. In Translational Control of Gene Expression , pp. 33-88. Edited by N. Sonenberg, J. W. B. Hershey & M. B. Mathews. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Hinton, T. M., Li, F. & Crabb, B. S. ( 2000; ). Internal ribosomal entry site-mediated translation initiation in equine rhinitis A virus: similarities to and differences from that of foot-and-mouth disease virus. Journal of Virology 74, 11708-11716.[CrossRef]
    [Google Scholar]
  40. Hoffman, M. A. & Palmenberg, A. C. ( 1996; ). Revertant analysis of J–K mutations in the encephalomyocarditis virus internal ribosome entry site detects an altered leader protein. Journal of Virology 70, 6425-6430.
    [Google Scholar]
  41. Holcik, M. & Korneluk, R. G. ( 2000; ). Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation. Molecular and Cellular Biology 20, 4648-4657.[CrossRef]
    [Google Scholar]
  42. Holcik, M., Yeh, C., Korneluk, R. G. & Chow, T. ( 2000; ). Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene 19, 4174-4177.[CrossRef]
    [Google Scholar]
  43. Honda, M., Brown, E. A. & Lemon, S. M. ( 1996; ). Stability of a stem–loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2, 955-968.
    [Google Scholar]
  44. Honda, M., Beard, M. R., Ping, L.-H. & Lemon, S. M. ( 1999; ). A phylogenetically conserved stem–loop structure at the 5’ border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation. Journal of Virology 73, 1165-1174.
    [Google Scholar]
  45. Huez, I., Creancier, L., Audigier, S., Gensac, M. C., Prats, A. C. & Prats, H. ( 1998; ). Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Molecular and Cellular Biology 18, 6178-6190.
    [Google Scholar]
  46. Hunt, S. L., Hsuan, J. J., Totty, N. & Jackson, R. J. ( 1999; ). unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes & Development 13, 437-448.[CrossRef]
    [Google Scholar]
  47. Iizuka, N., Najita, L., Franzusoff, A. & Sarnow, P. ( 1994; ). Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Molecular and Cellular Biology 14, 7322-7330.
    [Google Scholar]
  48. Ishii, T., Shiroki, K., Iwai, A. & Nomoto, A. ( 1999; ). Identification of a new element for RNA replication within the internal ribosome entry site of poliovirus RNA. Journal of General Virology 80, 917-920.
    [Google Scholar]
  49. Ito, T., Tahara, S. M. & Lai, M. M. ( 1998; ). The 3’-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. Journal of Virology 72, 8789-8796.
    [Google Scholar]
  50. Jackson, R. J. ( 2000; ). Comparative view of initiation site selection mechanisms. In Translational Control of Gene Expression , pp. 127-184. Edited by N. Sonenberg, J. W. B. Hershey & M. B. Mathews. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  51. Jang, S. K. & Wimmer, E. ( 1990; ). Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes & Development 4, 1560-1572.[CrossRef]
    [Google Scholar]
  52. Jang, S. K., Krausslich, H. G., Nicklin, M. J., Duke, G. M., Palmenberg, A. C. & Wimmer, E. ( 1988; ). A segment of the 5’ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. Journal of Virology 62, 2636-2643.
    [Google Scholar]
  53. Joachims, M., Van Breugel, P. C. & Lloyd, R. E. ( 1999; ). Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. Journal of Virology 73, 718-727.
    [Google Scholar]
  54. Johannes, G. & Sarnow, P. ( 1998; ). Cap-independent polysomal association of natural mRNAs encoding c-myc, BiP, and eIF4G conferred by internal ribosome entry sites. RNA 4, 1500-1513.[CrossRef]
    [Google Scholar]
  55. Johannes, G., Carter, M. S., Eisen, M. B., Brown, P. O. & Sarnow, P. ( 1999; ). Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proceedings of the National Academy of Sciences, USA 96, 13118-13123.[CrossRef]
    [Google Scholar]
  56. Johansen, L. K. & Morrow, C. D. ( 2000; ). Inherent instability of poliovirus genomes containing two internal ribosome entry site (IRES) elements supports a role for the IRES in encapsidation. Journal of Virology 74, 8335-8342.[CrossRef]
    [Google Scholar]
  57. Jubin, R., Vantuno, N. E., Kieft, J. S., Murray, M. G., Doudna, J. A., Lau, J. Y. N. & Baroudy, B. M. ( 2000; ). Hepatitis C virus internal ribosome entry site (IRES) stem loop IIId contains a phylogenetically conserved GGG triplet essential for translation and IRES folding. Journal of Virology 74, 10430-10437.[CrossRef]
    [Google Scholar]
  58. Kaminski, A. & Jackson, R. J. ( 1998; ). The polypyrimidine tract binding protein (PTB) requirement for internal initiation of translation of cardiovirus RNAs is conditional rather than absolute. RNA 4, 626-638.[CrossRef]
    [Google Scholar]
  59. Kaminski, A., Belsham, G. J. & Jackson, R. J. ( 1994; ). Translation of encephalomyocarditis virus RNA: parameters influencing the selection of the internal initiation site. EMBO Journal 13, 1673-1681.
    [Google Scholar]
  60. Kamoshita, N., Tsukiyama-Kohara, K., Kohara, M. & Nomoto, A. ( 1997; ). Genetic analysis of internal ribosomal entry site on hepatitis C virus RNA: implication for involvement of the highly ordered structure and cell type-specific transacting factors. Virology 233, 9-18.[CrossRef]
    [Google Scholar]
  61. Kerekatte, V., Keiper, B. D., Badorff, C., Cai, A., Knowlton, K. U. & Rhoads, R. E. ( 1999; ). Cleavage of poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis shutoff? Journal of Virology 73, 709-717.
    [Google Scholar]
  62. Kieft, J. S., Zhou, K., Jubin, R., Murray, M. G., Lau, J. Y. & Doudna, J. A. ( 1999; ). The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. Journal of Molecular Biology 292, 513-529.[CrossRef]
    [Google Scholar]
  63. Kim, J. H., Hahm, B., Kim, Y. K., Choi, M. & Jang, S. K. ( 2000; ). Protein–protein interaction among hnRNPs shuttling between nucleus and cytoplasm. Journal of Molecular Biology 298, 395-405.[CrossRef]
    [Google Scholar]
  64. Kolupaeva, V. G., Hellen, C. U. T. & Shatsky, I. N. ( 1996; ). Structural analysis of the interaction of the pyrimidine tract-binding protein with the internal ribosomal entry site of encephalomyocarditis virus and foot-and-mouth disease virus RNAs. RNA 2, 1199-1212.
    [Google Scholar]
  65. Kolupaeva, V. G., Pestova, T. V., Hellen, C. U. T. & Shatsky, I. N. ( 1998; ). Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. Journal of Biological Chemistry 273, 18599-18604.[CrossRef]
    [Google Scholar]
  66. Kolupaeva, V. G., Pestova, T. V. & Hellen, C. U. T. ( 2000; ). An enzymatic footprinting analysis of the interaction of 40S ribosomal subunits with the internal ribosomal entry site of hepatitis C virus. Journal of Virology 74, 6242-6250.[CrossRef]
    [Google Scholar]
  67. Kruger, M., Beger, C., Li, Q. X., Welch, P. J., Tritz, R., Leavitt, M., Barber, J. R. & Wong-Staal, F. ( 2000; ). Identification of eIF2B γ and eIF2 γ as cofactors of hepatitis C virus internal ribosome entry site-mediated translation using a functional genomics approach. Proceedings of the National Academy of Sciences, USA 97, 8566-8571.[CrossRef]
    [Google Scholar]
  68. Kühn, R., Luz, N. & Beck, E. ( 1990; ). Functional analysis of the internal translation initiation site of foot-and-mouth disease virus. Journal of Virology 64, 4625-4631.
    [Google Scholar]
  69. Le, H., Browning, K. S. & Gallie, D. R. ( 2000; ). The phosphorylation state of poly(A)-binding protein specifies its binding to poly(A) RNA and its interaction with eukaryotic initiation factor (eIF) 4F, eIFiso4F, and eIF4B. Journal of Biological Chemistry 275, 17452-17462.[CrossRef]
    [Google Scholar]
  70. Lerat, H., Shimizu, Y. K. & Lemon, S. M. ( 2000; ). Cell type-specific enhancement of hepatitis C virus internal ribosome entry site-directed translation due to 5’ nontranslated region substitutions selected during passage of virus in lymphoblastoid cells. Journal of Virology 74, 7024-7031.[CrossRef]
    [Google Scholar]
  71. Lomakin, I. B., Hellen, C. U. T. & Pestova, T. V. ( 2000; ). Physical association of eukaryotic initiation factor 4G (eIF4G) with eIF4A strongly enhances binding of eIF4G to the internal ribosomal entry site of encephalomyocarditis virus and is required for internal initiation of translation. Molecular and Cellular Biology 20, 6019-6029.[CrossRef]
    [Google Scholar]
  72. López de Quinto, S. & Martı́nez-Salas, E. ( 1997; ). Conserved structural motifs located in distal loops of aphthovirus internal ribosome entry site domain 3 are required for internal initiation of translation. Journal of Virology 71, 4171-4175.
    [Google Scholar]
  73. López de Quinto, S. & Martı́nez-Salas, E. ( 1998; ). Parameters influencing translational efficiency in aphthovirus IRES-based bicistronic expression vectors. Gene 217, 51-56.[CrossRef]
    [Google Scholar]
  74. López de Quinto, S. & Martı́nez-Salas, E. ( 1999; ). Involvement of the aphthovirus RNA region located between the two functional AUGs in start codon selection. Virology 255, 324-336.[CrossRef]
    [Google Scholar]
  75. López de Quinto, S. & Martı́nez-Salas, E. ( 2000; ). Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo. RNA 6, 1380-1392.[CrossRef]
    [Google Scholar]
  76. Luz, N. & Beck, E. ( 1991; ). Interaction of a cellular 57-kilodalton protein with the internal translation initiation site of foot-and-mouth disease virus. Journal of Virology 65, 6486-6494.
    [Google Scholar]
  77. Macejak, D. G. & Sarnow, P. ( 1991; ). Internal initiation of translation mediated by the 5’ leader of a cellular mRNA. Nature 353, 90-94.
    [Google Scholar]
  78. Martı́nez-Salas, E. ( 1999; ). Internal ribosome entry site biology and its use in expression vectors. Current Opinion in Biotechnology 10, 458-464.[CrossRef]
    [Google Scholar]
  79. Martı́nez-Salas, E., Sáiz, J. C., Dávila, M., Belsham, G. J. & Domingo, E. ( 1993; ). A single nucleotide substitution in the internal ribosome entry site of foot-and-mouth disease virus leads to enhanced cap-independent translation in vivo. Journal of Virology 67, 3748-3755.
    [Google Scholar]
  80. Martı́nez-Salas, E., Regalado, M. P. & Domingo, E. ( 1996; ). Identification of an essential region for internal initiation of translation in the aphthovirus internal ribosome entry site, and implications for viral evolution. Journal of Virology 70, 992-998.
    [Google Scholar]
  81. Meerovitch, K., Svitkin, Y. V., Lee, H. S., Lejbkowicz, F., Kenan, D. J., Chan, E. K., Agol, V. I., Keene, J. D. & Sonenberg, N. ( 1993; ). La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. Journal of Virology 67, 3798-3807.
    [Google Scholar]
  82. Meyer, K., Petersen, A., Niepmann, M. & Beck, E. ( 1995; ). Interaction of eukaryotic initiation factor eIF-4B with a picornavirus internal translation initiation site. Journal of Virology 69, 2819-2824.
    [Google Scholar]
  83. Michel, Y. M., Poncet, D., Piron, M., Kean, K. M. & Borman, A. M. ( 2000; ). Cap–poly(A) synergy in mammalian cell-free extracts: investigation of the requirements for poly(A)-mediated stimulation of translation initiation. Journal of Biological Chemistry 275, 32268-32276.[CrossRef]
    [Google Scholar]
  84. Nicholson, R., Pelletier, J., Le, S. Y. & Sonenberg, N. ( 1991; ). Structural and functional analysis of the ribosome landing pad of poliovirus type 2: in vivo translation studies. Journal of Virology 65, 5886-5894.
    [Google Scholar]
  85. Niepel, M. & Gallie, D. R. ( 1999; ). Identification and characterization of the functional elements within the tobacco etch virus 5’ leader required for cap-independent translation. Journal of Virology 73, 9080-9088.
    [Google Scholar]
  86. Niepmann, M., Petersen, A., Meyer, K. & Beck, E. ( 1997; ). Functional involvement of polypyrimidine tract-binding protein in translation initiation complexes with the internal ribosome entry site of foot-and-mouth disease virus. Journal of Virology 71, 8330-8339.
    [Google Scholar]
  87. Odreman-Macchioli, F. E., Tisminetzky, S. G., Zotti, M., Baralle, F. E. & Buratti, E. ( 2000; ). Influence of correct secondary and tertiary RNA folding on the binding of cellular factors to the HCV IRES. Nucleic Acids Research 28, 875-885.[CrossRef]
    [Google Scholar]
  88. Oh, S. K., Scott, M. P. & Sarnow, P. ( 1992; ). Homeotic gene Antennapedia mRNA contains 5’-noncoding sequences that confer translational initiation by internal ribosome binding. Genes & Development 6, 1643-1653.[CrossRef]
    [Google Scholar]
  89. Ohlmann, T. & Jackson, R. J. ( 1999; ). The properties of chimeric picornavirus IRESes show that discrimination between internal translation initiation sites is influenced by the identity of the IRES and not just the context of the AUG codon. RNA 5, 764-778.[CrossRef]
    [Google Scholar]
  90. Ohlmann, T., Rau, M., Pain, V. M. & Morley, S. J. ( 1996; ). The C-terminal domain of eukaryotic protein synthesis initiation factor (eIF) 4G is sufficient to support cap-independent translation in the absence of eIF4E. EMBO Journal 15, 1371-1382.
    [Google Scholar]
  91. Ohlmann, T., López-Lastra, M. & Darlix, J. L. ( 2000; ). An internal ribosome entry segment promotes translation of the simian immunodeficiency virus genomic RNA. Journal of Biological Chemistry 275, 11899-11906.[CrossRef]
    [Google Scholar]
  92. Oumard, A., Hennecke, M., Hauser, H. & Nourbakhsh, M. ( 2000; ). Translation of NRF mRNA is mediated by highly efficient internal ribosome entry. Molecular and Cellular Biology 20, 2755-2759.[CrossRef]
    [Google Scholar]
  93. Pelletier, J. & Sonenberg, N. ( 1988; ). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-325.[CrossRef]
    [Google Scholar]
  94. Pestova, T. V., Hellen, C. U. T. & Wimmer, E. ( 1991; ). Translation of poliovirus RNA: role of an essential cis-acting oligopyrimidine element within the 5’ nontranslated region and involvement of a cellular 57-kilodalton protein. Journal of Virology 65, 6194-6204.
    [Google Scholar]
  95. Pestova, T. V., Hellen, C. U. T. & Shatsky, I. N. ( 1996; ). Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Molecular and Cellular Biology 16, 6859-6869.
    [Google Scholar]
  96. Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J. & Hellen, C. U. T. ( 1998; ). A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes & Development 12, 67-83.[CrossRef]
    [Google Scholar]
  97. Pilipenko, E. V., Gmyl, A. P., Maslova, S. V., Svitkin, Y. V., Sinyakov, A. N. & Agol, V. I. ( 1992; ). Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell 68, 119-131.[CrossRef]
    [Google Scholar]
  98. Pilipenko, E. V., Pestova, T. V., Kolupaeva, V. G., Khitrina, E. V., Poperechnaya, A. N., Agol, V. I. & Hellen, C. U. T. ( 2000; ). A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes & Development 14, 2028-2045.
    [Google Scholar]
  99. Preiss, T. & Hentze, M. W. ( 1998; ). Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392, 516-520.[CrossRef]
    [Google Scholar]
  100. Psaridi, L., Georgopoulou, U., Varaklioti, A. & Mavromara, P. ( 1999; ). Mutational analysis of a conserved tetraloop in the 5’ untranslated region of hepatitis C virus identifies a novel RNA element essential for the internal ribosome entry site function. FEBS Letters 453, 49-53.[CrossRef]
    [Google Scholar]
  101. Pyronnet, S., Pradayrol, L. & Sonenberg, N. ( 2000; ). A cell cycle-dependent internal ribosome entry site. Molecular Cell 5, 607-616.[CrossRef]
    [Google Scholar]
  102. Ramos, R. & Martı́nez-Salas, E. ( 1999; ). Long-range RNA interactions between structural domains of the aphthovirus internal ribosome entry site (IRES). RNA 5, 1374-1383.[CrossRef]
    [Google Scholar]
  103. Reynolds, J. E., Kaminski, A., Kettinen, H. J., Grace, K., Clarke, B. E., Carroll, A. R., Rowlands, D. J. & Jackson, R. J. ( 1995; ). Unique features of internal initiation of hepatitis C virus RNA translation. EMBO Journal 14, 6010-6020.
    [Google Scholar]
  104. Roberts, L. O. & Belsham, G. J. ( 1997; ). Complementation of defective picornavirus internal ribosome entry site (IRES) elements by the coexpression of fragments of the IRES. Virology 227, 53-62.[CrossRef]
    [Google Scholar]
  105. Robertson, M. E., Seamons, R. A. & Belsham, G. J. ( 1999; ). A selection system for functional internal ribosome entry site (IRES) elements: analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA 5, 1167-1179.[CrossRef]
    [Google Scholar]
  106. Sachs, A. ( 2000; ). Physical and functional interactions between the mRNA cap structure and the poly(A) tail. In Translational Control of Gene Expression , pp. 447-465. Edited by N. Sonenberg, J. W. B. Hershey & M. B. Mathews. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  107. Sáiz, J. C., López de Quinto, S., Ibarrola, N., López-Labrador, F. X., Sánchez-Tapias, J. M., Rodes, J. & Martı́nez-Salas, E. ( 1999; ). Internal initiation of translation efficiency in different hepatitis C genotypes isolated from interferon treated patients. Archives of Virology 144, 215-229.[CrossRef]
    [Google Scholar]
  108. Sasaki, J. & Nakashima, N. ( 1999; ). Translation initiation at the CUU codon is mediated by the internal ribosome entry site of an insect picorna-like virus in vitro. Journal of Virology 73, 1219-1226.
    [Google Scholar]
  109. Sasaki, J. & Nakashima, N. ( 2000; ). Methionine-independent initiation of translation in the capsid protein of an insect RNA virus. Proceedings of the National Academy of Sciences, USA 97, 1512-1515.[CrossRef]
    [Google Scholar]
  110. Sella, O., Gerlitz, G., Le, S. Y. & Elroy-Stein, O. ( 1999; ). Differentiation-induced internal translation of c-sis mRNA: analysis of the cis elements and their differentiation-linked binding to the hnRNP C protein. Molecular and Cellular Biology 19, 5429-5440.
    [Google Scholar]
  111. Sizova, D. V., Kolupaeva, V. G., Pestova, T. V., Shatsky, I. N. & Hellen, C. U. T. ( 1998; ). Specific interaction of eukaryotic translation initiation factor 3 with the 5’ nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. Journal of Virology 72, 4775-4782.
    [Google Scholar]
  112. Skulachev, M. V., Ivanov, P. A., Karpova, O. V., Korpela, T., Rodionova, N. P., Dorokhov, Yu. L. & Atabekov, J. G. ( 1999; ). Internal initiation of translation directed by the 5’-untranslated region of the tobamovirus subgenomic RNA I2. Virology 263, 139-154.[CrossRef]
    [Google Scholar]
  113. Spångberg, K. & Schwartz, S. ( 1999; ). Poly(C)-binding protein interacts with the hepatitis C virus 5’ untranslated region. Journal of General Virology 80, 1371-1376.
    [Google Scholar]
  114. Stein, I., Itin, A., Einat, P., Skaliter, R., Grossman, Z. & Keshet, E. ( 1998; ). Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Molecular and Cellular Biology 18, 3112-3119.
    [Google Scholar]
  115. Stewart, S. R. & Semler, B. L. ( 1997; ). RNA determinants of picornavirus cap-independent translation initiation. Seminars in Virology 8, 242-255.[CrossRef]
    [Google Scholar]
  116. Stoneley, M., Chappell, S. A., Jopling, C. L., Dickens, M., MacFarlane, M. & Willis, A. E. ( 2000a; ). c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Molecular and Cellular Biology 20, 1162-1169.[CrossRef]
    [Google Scholar]
  117. Stoneley, M., Subkhankulova, T., Le Quesne, J. P., Coldwell, M. J., Jopling, C. L., Belsham, G. J. & Willis, A. E. ( 2000 b; ). Analysis of the c-myc IRES; a potential role for cell-type specific trans-acting factors and the nuclear compartment. Nucleic Acids Research 28, 687-694.[CrossRef]
    [Google Scholar]
  118. Tarun, S. Z. & Sachs, A. B. ( 1996; ). Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO Journal 15, 7168-7177.
    [Google Scholar]
  119. Thompson, S. R. & Sarnow, P. ( 2000; ). Regulation of host cell translation by viruses and effects on cell function. Current Opinion in Microbiology 3, 366-370.[CrossRef]
    [Google Scholar]
  120. Venkatesan, A., Das, S. & Dasgupta, A. ( 1999; ). Structure and function of a small RNA that selectively inhibits internal ribosome entry site-mediated translation. Nucleic Acids Research 27, 562-572.[CrossRef]
    [Google Scholar]
  121. Walter, B. L., Nguyen, J. H., Ehrenfeld, E. & Semler, B. L. ( 1999; ). Differential utilization of poly(rC) binding protein 2 in translation directed by picornavirus IRES elements. RNA 5, 1570-1585.[CrossRef]
    [Google Scholar]
  122. Wang, C., Le, S-Y., Ali, N. & Siddiqui, A. ( 1995; ). An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5’ noncoding region. RNA 1, 526-537.
    [Google Scholar]
  123. Wang, S., Browning, K. S. & Miller, W. A. ( 1997; ). A viral sequence in the 3’-untranslated region mimics a 5’ cap in facilitating translation of uncapped mRNA. EMBO Journal 16, 4107-4116.[CrossRef]
    [Google Scholar]
  124. Wang, Z., Day, N., Trifillis, P. & Kiledjian, M. ( 1999a; ). An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Molecular and Cellular Biology 19, 4552-4560.
    [Google Scholar]
  125. Wang, S., Guo, L., Allen, E. & Miller, W. A. ( 1999b; ). A potential mechanism for selective control of cap-independent translation by a viral RNA sequence in cis and in trans. RNA 5, 728-738.[CrossRef]
    [Google Scholar]
  126. Wilson, J. E., Pestova, T. V., Hellen, C. U. T. & Sarnow, P. ( 2000a; ). Initiation of protein synthesis from the A site of the ribosome. Cell 102, 511-520.[CrossRef]
    [Google Scholar]
  127. Wilson, J. E., Powell, M. J., Hoover, S. E. & Sarnow, P. ( 2000b; ). Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Molecular and Cellular Biology 20, 4990-4999.[CrossRef]
    [Google Scholar]
  128. Wu, B. & White, K. A. ( 1999; ). A primary determinant of cap-independent translation is located in the 3’-proximal region of the tomato bushy stunt virus genome. Journal of Virology 73, 8982-8988.
    [Google Scholar]
  129. Ziegler, E., Borman, A. M., Kirchweger, R., Skern, T. & Kean, K. M. ( 1995; ). Foot-and-mouth disease virus Lb proteinase can stimulate rhinovirus and enterovirus IRES-driven translation and cleave several proteins of cellular and viral origin. Journal of Virology 69, 3465-3474.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-5-973
Loading
/content/journal/jgv/10.1099/0022-1317-82-5-973
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error