Characterization of the murine gammaherpesvirus 68 ORF74 product: a novel oncogenic G protein-coupled receptor Free

Abstract

Murine gammaherpesvirus (MHV-68) is well established as a small animal model for the study of gammaherpesviruses. The MHV-68 genome contains an open reading frame (ORF74) that has significant sequence homology with mammalian G-protein coupled receptors (GPCRs) and the GPCR from the related Kaposi’s sarcoma-associated herpesvirus (KSHV). Here we show that the MHV-68 ORF74 is predicted to encode a GPCR since it has seven potential transmembrane helices and that it has other sequence motifs in common with GPCRs. Of interest is the observation that the sequence around a conserved arginine at the start of the second intracellular loop suggests that the ORF74 product may signal constitutively (agonist independent). Given that the ORF74 product is predicted to encode a GPCR we named it MHV-GPCR. In studies on the transcription of the MHV-GPCR, we determined that it was encoded on multiple early transcripts of 3·4, 4·4, 6·6 and 8·7 kb in size. At least one of these transcripts was bicistronic, containing the ORF encoding the Bcl-2 homologue also. , we found that MHV GPCR was expressed during acute infection but also during persistence, particularly in the lungs of infected mice. Immunofluorescence studies indicated that the MHV GPCR protein was expressed on the surface of cells in patches. Finally, like the KSHV GPCR, expression of the MHV GPCR resulted in transformation of NIH 3T3 cells. We surmise, therefore, that the MHV GPCR may act in concert with genes with which it is expressed such as vBcl-2 to enhance the growth and survival of MHV-68-infected cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-5-1187
2001-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/5/0821187a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-5-1187&mimeType=html&fmt=ahah

References

  1. Ahuja S. K., Murphy P. M. 1993; Molecular piracy of mammalian interleukin-8 receptor type B by herpesvirus saimiri. Journal of Biological Chemistry 268:20691–20694
    [Google Scholar]
  2. Alewijnse A. E., Timmerman H., Jacobs E. H., Smit M. J., Roovers E., Cotecchia S., Leurs R. 2000; The effect of mutations in the DRY motif on the constitutive activity and structural instability of the histamine H(2) receptor. Molecular Pharmacology 57:890–898
    [Google Scholar]
  3. Arvanitakis L., Geras-Raaka E., Varma A., Gershengorn M. C., Cesarman E. 1997; Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385:347–350
    [Google Scholar]
  4. Baichwal V. R., Sugden B. 1989; The multiple membrane-spanning segments of the BNLF-1 oncogene from Epstein–Barr virus are required for transformation. Oncogene 4:67–74
    [Google Scholar]
  5. Bais C., Santomasso B., Coso O., Arvanitakis L., Raaka E. G., Gutkind J. S., Asch A. S., Cesarman E., Gershengorn M. C., Mesri E. A., Gerhengorn M. C. 1998; G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391:86–89
    [Google Scholar]
  6. Bellows D. S., Chau B. N., Lee P., Lazebnik Y., Burns W. H., Hardwick J. M. 2000; Antiapoptotic herpesvirus bcl-2 homologs escape caspase-mediated conversion to proapoptotic proteins. Journal of Virology 74:5024–5031
    [Google Scholar]
  7. Blaskovic D., Stancekova M., Svobodova J., Mistrikova J. 1980; Isolation of five strains of herpesviruses from two species of free living small rodents. Acta Virologica 24:468
    [Google Scholar]
  8. Blaskovic D., Stanekova D., Rajcani J. 1984; Experimental pathogenesis of murine herpesvirus in newborn mice. Acta Virologica 28:225–231
    [Google Scholar]
  9. Blom N., Gammeltoft S., Brunak S. 1999; Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology 294:1351–1362
    [Google Scholar]
  10. Bojan F., Kinsella A. R., Fox M. 1983; Effect of tumor promoter 12- O -tetradecanoylphorbol-13-acetate on recovery of methotrexate-, N -(phosphonacetyl)-l-aspartate-, and cadmium-resistant colony-forming mouse and hamster cells. Cancer Research 43:5217–5221
    [Google Scholar]
  11. Boulay F., Tardif M., Brouchon L., Vignais P. 1990; Synthesis and use of a novel N -formyl peptide derivative to isolate a human N -formyl peptide receptor cDNA. Biochemical and Biophysical Research Communications 168:1103–1109
    [Google Scholar]
  12. Burger M., Burger J. A., Hoch R. C., Oades Z., Takamori H., Schraufstatter I. U. 1999; Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi’s sarcoma herpesvirus-G protein-coupled receptor. Journal of Immunology 163:2017–2022
    [Google Scholar]
  13. Cleveland D. W., Lopata M. A., MacDonald R. J., Cowan N. J., Rutter W. J., Kirschner M. W. 1980; Number and evolutionary conservation of alpha- and beta-tubulin and cytoplasmic beta- and gamma-actin genes using specific cloned cDNA probes. Cell 20:95–105
    [Google Scholar]
  14. Dohlman H. G., Thorner J., Caron M. G., Lefkowitz R. J. 1991; Model systems for the study of seven-transmembrane-segment receptors. Annual Review of Biochemistry 60:653–688
    [Google Scholar]
  15. Ehtisham S., Sunil-Chandra N. P., Nash A. A. 1993; Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells. Journal of Virology 67:5247–5252
    [Google Scholar]
  16. Flano E., Husain S. M., Sample J. T., Woodland D. L., Blackman M. A. 2000; Latent murine gamma-herpesvirus infection is established in activated B cells, dendritic cells, and macrophages. Journal of Immunology 165:1074–1081
    [Google Scholar]
  17. Gao J. L., Kuhns D. B., Tiffany H. L., McDermott D., Li X., Francke U., Murphy P. M. 1993; Structure and functional expression of the human macrophage inflammatory protein 1 alpha/RANTES receptor. Journal of Experimental Medicine 177:1421–1427
    [Google Scholar]
  18. Graham F. L., Smiley J., Russell W. C., Nairn R. 1977; Characteristics of a human cell line transformed by DNA from human adenovirus type 5. Journal of General Virology 36:59–74
    [Google Scholar]
  19. Gutkind J. S., Novotny E. A., Brann M. R., Robbins K. C. 1991; Muscarinic acetylcholine receptor subtypes as agonist-dependent oncogenes. Proceedings of the National Academy of Sciences, USA 88:4703–4707
    [Google Scholar]
  20. Hofmann K., Stoffel W. 1993; TMbase – a database of membrane spanning proteins segments. Biological Chemistry Hoppe-Seyler 347:166
    [Google Scholar]
  21. Husain S. M., Usherwood E. J., Dyson H., Coleclough C., Coppola M. A., Woodland D. L., Blackman M. A., Stewart J. P., Sample J. T. 1999; Murine gammaherpesvirus M2 gene is latency-associated and its protein a target for CD8+ T lymphocytes. Proceedings of the National Academy of Sciences, USA 96:7508–7513
    [Google Scholar]
  22. Julius D., Livelli T. J., Jessell T. M., Axel R. 1989; Ectopic expression of the serotonin 1c receptor and the triggering of malignant transformation. Science 244:1057–1062
    [Google Scholar]
  23. Kalderon D., Oostra B. A., Ely B. K., Smith A. E. 1982; Deletion loop mutagenesis: a novel method for the construction of point mutations using deletion mutants. Nucleic Acids Research 10:5161–5171
    [Google Scholar]
  24. Kirshner J. R., Staskus K., Haase A., Lagunoff M., Ganem D. 1999; Expression of the open reading frame 74 (G-protein-coupled receptor) gene of Kaposi’s sarcoma (KS)-associated herpesvirus: implications for KS pathogenesis. Journal of Virology 73:6006–6014
    [Google Scholar]
  25. Knudsen S. 1999; Promoter 2.0: for the recognition of Pol II promoter sequences. Bioinformatics 15:356–361
    [Google Scholar]
  26. Liu S., Pavlova I. V., Virgin H. W., Speck S. H. 2000; Characterization of gammaherpesvirus 68 gene 50 transcription. Journal of Virology 74:2029–2037
    [Google Scholar]
  27. Mackett M., Stewart J. P., Pepper S. de V., Chee M., Efstathiou S., Nash A. A., Arrand J. R. 1997; Genetic content and preliminary transcriptional analysis of a representative region of murine gammaherpesvirus 68. Journal of General Virology 78:1425–1433
    [Google Scholar]
  28. Morgenstern J. P., Land H. 1990; Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Research 18:3587–3596
    [Google Scholar]
  29. Murphy P. M., Ozcelik T., Kenney R. T., Tiffany H. L., McDermott D., Francke U. 1992; A structural homologue of the N -formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family. Journal of Biological Chemistry 267:7637–7643
    [Google Scholar]
  30. Norman J. A., Hobart P., Manthorpe M., Felgner P., Wheeler C. 1997; Development of improved vectors for DNA-based immunization and other gene therapy applications. Vaccine 15:801–803
    [Google Scholar]
  31. Parma J., Duprez L., Van Sande J., Cochaux P., Gervy C., Mockel J., Dumont J., Vassart G. 1993; Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 365:649–651
    [Google Scholar]
  32. Probst W. C., Snyder L. A., Schuster D. I., Brosius J., Sealfon S. C. 1992; Sequence alignment of the G-protein coupled receptor superfamily. DNA and Cell Biology 11:1–20
    [Google Scholar]
  33. Roy D. J., Ebrahimi B. C., Dutia B. M., Nash A. A., Stewart J. P. 2000; Murine gammaherpesvirus M11 gene product inhibits apoptosis and is expressed during virus persistence. Archives of Virology 145:2411–2420
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Schipani E., Kruse K., Juppner H. 1995; A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 268:98–100
    [Google Scholar]
  36. Stewart J. P. 1999; Of mice and men: murine gammaherpesvirus 68 as a model. Epstein–Barr Virus Report 6:31–35
    [Google Scholar]
  37. Stewart J. P., Hampson I. N., Heinrich H. W., Mackett M., Arrand J. R. 1989; Enhanced expression of the Epstein–Barr virus latent membrane protein by a recombinant vaccinia virus. Journal of General Virology 70:1231–1237
    [Google Scholar]
  38. Stewart J. P., Behm F. G., Arrand J. R., Rooney C. M. 1994; Differential expression of viral and human interleukin-10 (IL-10) by primary B cell tumors and B cell lines. Virology 200:724–732
    [Google Scholar]
  39. Stewart J. P., Usherwood E. J., Ross A., Dyson H., Nash T. 1998; Lung epithelial cells are a major site of murine gammaherpesvirus persistence. Journal of Experimental Medicine 187:1941–1951
    [Google Scholar]
  40. Strader C. D., Fong T. M., Graziano M. P., Tota M. R. 1995; The family of G-protein-coupled receptors. FASEB Journal 9:745–754
    [Google Scholar]
  41. Sunil-Chandra N. P., Efstathiou S., Arno J., Nash A. A. 1992a; Virological and pathological features of mice infected with murine gammaherpesvirus 68. Journal of General Virology 73:2347–2356
    [Google Scholar]
  42. Sunil-Chandra N. P., Efstathiou S., Nash A. A. 1992b; Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. Journal of General Virology 73:3275–3279
    [Google Scholar]
  43. Sunil-Chandra N. P., Arno J., Fazakerley J., Nash A. A. 1994; Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. American Journal of Pathology 145:818–826
    [Google Scholar]
  44. Svobodova J., Blaskovic D., Mistrikova J. 1982; Growth characteristics of herpesviruses isolated from free living small rodents. Acta Virologica 26:256–263
    [Google Scholar]
  45. Talbot S. J., Weiss R. A., Kellam P., Boshoff C. 1999; Transcriptional analysis of human herpesvirus-8 open reading frames 71, 72, 73, K14, and 74 in a primary effusion lymphoma cell line. Virology 257:84–94
    [Google Scholar]
  46. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680
    [Google Scholar]
  47. Torii T., Konishi K., Sample J., Takada K. 1998; The truncated form of the Epstein–Barr virus LMP-1 is dispensable or complimentable by the full-length form in virus infection and replication. Virology 251:273–278
    [Google Scholar]
  48. Usherwood E. J., Stewart J. P., Robertson K., Allen D. J., Nash A. A. 1996; Absence of splenic latency in murine gammaherpesvirus 68-infected B cell-deficient mice. Journal of General Virology 77:2819–2825
    [Google Scholar]
  49. van Dyk L. F., Hess J. L., Katz J. D., Jacoby M., Speck S. H., Virgin H. W. 1999; The murine gammaherpesvirus 68 v-cyclin gene is an oncogene that promotes cell cycle progression in primary lymphocytes. Journal of Virology 73:5110–5122
    [Google Scholar]
  50. Virgin H. W., Latreille P., Wamsley P., Hallsworth K., Weck K. E., Dal Canto A. J., Speck S. H. 1997; Complete sequence and genomic analysis of murine gammaherpesvirus 68. Journal of Virology 71:5894–5904
    [Google Scholar]
  51. Virgin H. W., Presti R. M., Li X. Y., Liu C., Speck S. H. 1999; Three distinct regions of the murine gammaherpesvirus 68 genome are transcriptionally active in latently infected mice. Journal of Virology 73:2321–2332
    [Google Scholar]
  52. Wang G. H., Garvey T. L., Cohen J. I. 1999; The murine gammaherpesvirus-68 M11 protein inhibits Fas- and TNF-induced apoptosis. Journal of General Virology 80:2737–2740
    [Google Scholar]
  53. Weck K. E., Barkon M. L., Yoo L. I., Speck S. H., Virgin H. W. 1996; Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. Journal of Virology 70:6775–6780
    [Google Scholar]
  54. Weck K. E., Kim S. S., Virgin H. W., Speck S. H. 1999; Macrophages are the major reservoir of latent murine gammaherpesvirus 68 in peritoneal cells. Journal of Virology 73:3273–3283
    [Google Scholar]
  55. Wu T. T., Usherwood E. J., Stewart J. P., Nash A. A., Sun R. 2000; Rta of murine gammaherpesvirus 68 reactivates the complete lytic cycle from latency. Journal of Virology 74:3659–3667
    [Google Scholar]
  56. Zetterberg H., Stenglein M., Jansson A., Ricksten A., Rymo L. 1999; Relative levels of EBNA1 gene transcripts from the C/W, F and Q promoters in Epstein–Barr virus-transformed lymphoid cells in latent and lytic stages of infection. Journal of General Virology 80:457–466
    [Google Scholar]
  57. Zhao B., Marshall D. R., Sample C. E. 1996; A conserved domain of the Epstein–Barr virus nuclear antigens 3A and 3C binds to a discrete domain of Jkappa. Journal of Virology 70:4228–4236
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-5-1187
Loading
/content/journal/jgv/10.1099/0022-1317-82-5-1187
Loading

Data & Media loading...

Most cited Most Cited RSS feed