1887

Abstract

The complete coding sequence of the herpesvirus of turkeys (HVT) unique long (U) region along with the internal repeat regions has been determined. This allows completion of the HVT nucleotide sequence by linkage to the sequence of the unique short (U) region. The genome is approximately 160 kbp and shows extensive similarity in organization to the genomes of Marek’s disease virus serotypes 1 and 2 (MDV-1, MDV-2) and other alphaherpesviruses. The HVT genome contains 75 ORFs, with three ORFs present in two copies. Sixty-seven ORFs were identified readily as homologues of other alphaherpesvirus genes. Seven of the remaining eight ORFs are homologous to genes in MDV, but are absent from other herpesviruses. These include a gene with similarity to cellular lipases. The final, HVT-unique gene is a virus homologue of the cellular NR-13 gene, the product of which belongs to the Bcl family of proteins that regulate apoptosis. No other herpesvirus sequenced to date contains a homologue of this gene. Of potential significance is the absence of a complete block of genes within the HVT internal repeat that is present in MDV-1. These include the pp38 and genes, which have been implicated in MDV-1-induced T-cell lymphoma. By implication, other genes present in this region of MDV-1, but missing in HVT, may play important roles in the different biological properties of the viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-5-1123
2001-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/5/0821123a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-5-1123&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389–3402
    [Google Scholar]
  2. Anderson A. S., Parcells M. S., Morgan R. W. 1998; The glycoprotein D (US6) homolog is not essential for oncogenicity or horizontal transmission of Marek’s disease virus. Journal of Virology 72:2548–2553
    [Google Scholar]
  3. Baines J. D., Ward P. L., Campadelli-Fiume G., Roizman B. 1991; The UL20 gene of herpes simplex virus 1 encodes a function necessary for viral egress. Journal of Virology 65:6414–6424
    [Google Scholar]
  4. Bandyopadhyay P. K. 1989; Characterization of a highly transcribed DNA region of herpesvirus of turkeys. Gene 79:361–367
    [Google Scholar]
  5. Becker Y., Asher Y., Tabor E., Davidson I., Malkinson M. 1994; Open reading frames in a 4556 nucleotide sequence within MDV-1 Bam HI-D DNA fragment: evidence for splicing of mRNA from a new viral glycoprotein gene. Virus Genes 8:55–69
    [Google Scholar]
  6. Blencowe B. J., Bowman J. A., McCracken S., Rosonina E. 1999; SR-related proteins and the processing of messenger RNA precursors. Biochemistry and Cell Biology 77:277–291
    [Google Scholar]
  7. Brunovskis P., Velicer L. F. 1995; The Marek’s disease virus (MDV) unique short region: alphaherpesvirus-homologous, fowlpox virus-homologous, and MDV-specific genes. Virology 206:324–338
    [Google Scholar]
  8. Bucher P., Bairoch A. 1994; A generalized profile syntax for biomolecular sequence motifs and its function in automatic sequence interpretation. Proceedings of the International Conference on Intelligent Systems for Molecular Biology 2:53–61
    [Google Scholar]
  9. Calnek B. W., Witter R. L. 1997; Marek’s disease. In Diseases of Poultry pp 363–413 Edited by Calnek B. W., Barnes H. J., Beard C. W. Ames, IA: Iowa State University Press;
    [Google Scholar]
  10. Campbell M. E., Palfreyman J. W., Preston C. M. 1984; Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. Journal of Molecular Biology 180:1–19
    [Google Scholar]
  11. Cantello J. L., Parcells M. S., Anderson A. S., Morgan R. W. 1997; Marek’s disease virus latency-associated transcripts belong to a family of spliced RNAs that are antisense to the ICP4 homolog gene. Journal of Virology 71:1353–1361
    [Google Scholar]
  12. Chen-Levy Z., Nourse J., Cleary M. L. 1989; The bcl-2 candidate proto-oncogene product is a 24-kilodalton integral-membrane protein highly expressed in lymphoid cell lines and lymphomas carrying the t(14; 18) translocation. Molecular and Cellular Biology 9:701–710
    [Google Scholar]
  13. Chinnaiyan A. M. 1999; The apoptosome: heart and soul of the cell death machine. Neoplasia 1:5–15
    [Google Scholar]
  14. Claesson-Welsh L., Spear P. G. 1986; Oligomerization of herpes simplex virus glycoprotein B. Journal of Virology 60:803–806
    [Google Scholar]
  15. Coussens P. M., Wilson M. R., Camp H., Roehl H., Isfort R. J., Velicer L. F. 1990; Characterization of the gene encoding herpesvirus of turkeys gp57–65: comparison to Marek’s disease virus gp57–65 and herpes simplex virus glycoprotein C. Virus Genes 3:291–307
    [Google Scholar]
  16. Dalrymple M. A., McGeoch D. J., Davison A. J., Preston C. M. 1985; DNA sequence of the herpes simplex virus type 1 gene whose product is responsible for transcriptional activation of immediate early promoters. Nucleic Acids Research 13:7865–7879
    [Google Scholar]
  17. Dingwell K. S., Brunetti C. R., Hendricks R. L., Tang Q., Tang M., Rainbow A. J., Johnson D. C. 1994; Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. Journal of Virology 68:834–845
    [Google Scholar]
  18. Dingwell K. S., Doering L. C., Johnson D. C. 1995; Glycoproteins E and I facilitate neuron-to-neuron spread of herpes simplex virus. Journal of Virology 69:7087–7098
    [Google Scholar]
  19. Dodson G. G., Lawson D. M., Winkler F. K. 1992; Structural and evolutionary relationships in lipase mechanism and activation. Faraday Discussions 93:95–105
    [Google Scholar]
  20. Elgadi M. M., Hayes C. E., Smiley J. R. 1999; The herpes simplex virus vhs protein induces endoribonucleolytic cleavage of target RNAs in cell extracts. Journal of Virology 73:7153–7164
    [Google Scholar]
  21. Elliott G., Mouzakitis G., O’Hare P. 1995; VP16 interacts via its activation domain with VP22, a tegument protein of herpes simplex virus, and is relocated to a novel macromolecular assembly in coexpressing cells. Journal of Virology 69:7932–7941
    [Google Scholar]
  22. Ewert D., Duhadaway J. 1999; Inhibition of apoptosis by Marek’s disease viruses. Acta Virologica 43:133–135
    [Google Scholar]
  23. Gillet G., Guerin M., Trembleau A., Brun G. 1995; A Bcl-2-related gene is activated in avian cells transformed by the Rous sarcoma virus. EMBO Journal 14:1372–1381
    [Google Scholar]
  24. Higgins D. G., Sharp P. M. 1988; CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244
    [Google Scholar]
  25. Hockenbery D., Nunez G., Milliman C., Schreiber R. D., Korsmeyer S. J. 1990; Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336
    [Google Scholar]
  26. Igarashi T., Takahashi M., Donovan J., Jessip J., Smith M., Hirai K., Tanaka A., Nonoyama M. 1987; Restriction enzyme map of herpesvirus of turkey DNA and its collinear relationship with Marek’s disease virus DNA. Virology 157:351–358
    [Google Scholar]
  27. Inohara N., Ding L., Chen S., Núñez G. 1997; harakiri , a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-XL. EMBO Journal 16:1686–1694
    [Google Scholar]
  28. Izumiya Y., Jang H.-K., Kashiwase H., Cai J.-S., Nishimura Y., Tsushima Y., Kato K., Miyazawa T., Kai C., Mikami T. 1998; Identification and transcriptional analysis of the homologues of the herpes simplex virus type 1 UL41 to UL51 genes in the genome of nononcogenic Marek’s disease virus serotype 2. Journal of General Virology 79:1997–2001
    [Google Scholar]
  29. Jang H. K., Ono M., Kim T. J., Izumiya Y., Damiani A. M., Matsumura T., Niikura M., Kai C., Mikami T. 1998; The genetic organization and transcriptional analysis of the short unique region in the genome of nononcogenic Marek’s disease virus serotype 2. Virus Research 58:137–147
    [Google Scholar]
  30. Jones D., Lee L., Liu J. L., Kung H. J., Tillotson J. K. 1992; Marek disease virus encodes a basic-leucine zipper gene resembling the fos/jun oncogenes that is highly expressed in lymphoblastoid tumors. Proceedings of the National Academy of Sciences, USA 89:4042–4046
    [Google Scholar]
  31. Jons A., Dijkstra J. M., Mettenleiter T. C. 1998; Glycoproteins M and N of pseudorabies virus form a disulfide-linked complex. Journal of Virology 72:550–557
    [Google Scholar]
  32. Karlin S., Mocarski E. S., Schachtel G. A. 1994; Molecular evolution of herpesviruses: genomic and protein sequence comparisons. Journal of Virology 68:1886–1902
    [Google Scholar]
  33. Kato A., Sato I., Ihara T., Ueda S., Ishihama A., Hirai K. 1989; Homologies between herpesvirus of turkey and Marek’s disease virus type-1 DNAs within two co-linearly arranged open reading frames, one encoding glycoprotein A. Gene 84:399–405
    [Google Scholar]
  34. Kingsley D. H., Keeler C.L. Jr 1999; Infectious laryngotracheitis virus, an alpha herpesvirus that does not interact with cell surface heparan sulfate. Virology 256:213–219
    [Google Scholar]
  35. Kopáček J., Zelník V., Brasseur R., Koptidesová D., Rejholcová O., Pastoreková S., Pastorek J. 1997; Herpesvirus of turkeys homologue of HSV VP16 is structurally related to varicella zoster virus trans-inducing protein encoded by ORF 10. Virus Genes 15:45–52
    [Google Scholar]
  36. Kwong A. D., Frenkel N. 1989; The herpes simplex virus virion host shutoff function. Journal of Virology 63:4834–4839
    [Google Scholar]
  37. Laquerre S., Person S., Glorioso J. C. 1996; Glycoprotein B of herpes simplex virus type 1 oligomerizes through the intermolecular interaction of a 28-amino-acid domain. Journal of Virology 70:1640–1650
    [Google Scholar]
  38. Lee L. F., Wu P., Sui D., Ren D., Kamil J., Kung H. J., Witter R. L. 2000; The complete unique long sequence and the overall genomic organization of the GA strain of Marek’s disease virus. Proceedings of the National Academy of Sciences, USA 97:6091–6096
    [Google Scholar]
  39. Leo C., Chen J. D. 2000; The SRC family of nuclear receptor coactivators. Gene 245:1–11
    [Google Scholar]
  40. Liu J. L., Ye Y., Lee L. F., Kung H. J. 1998; Transforming potential of the herpesvirus oncoprotein MEQ: morphological transformation, serum-independent growth, and inhibition of apoptosis. Journal of Virology 72:388–395
    [Google Scholar]
  41. Lubinski J. M., Wang L., Soulika A. M., Burger R., Wetsel R. A., Colten H., Cohen G. H., Eisenberg R. J., Lambris J. D., Friedman H. M. 1998; Herpes simplex virus type 1 glycoprotein gC mediates immune evasion in vivo. Journal of Virology 72:8257–8263
    [Google Scholar]
  42. McCabe J. B., Berthiaume L. G. 1999; Functional roles for fatty acylated amino-terminal domains in subcellular localization. Molecular Biology of the Cell 10:3771–3786
    [Google Scholar]
  43. McGeoch D. J., Cook S. 1994; Molecular phylogeny of the alphaherpesvirinae subfamily and a proposed evolutionary timescale. Journal of Molecular Biology 238:9–22
    [Google Scholar]
  44. McGeoch D. J., Davison A. J. 1999; The descent of human herpesvirus 8. Seminars in Cancer Biology 9:201–209
    [Google Scholar]
  45. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  46. McGeoch D. J., Cook S., Dolan A., Jamieson F. E., Telford E. A. 1995; Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. Journal of Molecular Biology 247:443–458
    [Google Scholar]
  47. McKie E. A., Ubukata E., Hasegawa S., Zhang S., Nonoyama M., Tanaka A. 1995; The transcripts from the sequence flanking the short component of Marek’s disease virus during latent infection form a unique family of 3′-coterminal RNAs. Journal of Virology 69:1310–1314
    [Google Scholar]
  48. Mangeney M., Schmitt J. R., Leverrier Y., Thomas J., Marvel J., Brun G., Gillet G. 1996; The product of the v-src-inducible gene Nr-13 is a potent anti-apoptotic factor. Oncogene 13:1441–1446
    [Google Scholar]
  49. Martin S. L., Aparisio D. I., Bandyopadhyay P. K. 1989; Genetic and biochemical characterization of the thymidine kinase gene from herpesvirus of turkeys. Journal of Virology 63:2847–2852
    [Google Scholar]
  50. Milne R. S. B., Paterson D. A., Booth J. C. 1998; Human cytomegalovirus glycoprotein H/glycoprotein L complex modulates fusion-from-without. Journal of General Virology 79:855–865
    [Google Scholar]
  51. Morgenstern B., Dress A., Werner T. 1996; Multiple DNA and protein sequence alignment based on segment-to-segment comparison. Proceedings of the National Academy of Sciences, USA 93:12098–12103
    [Google Scholar]
  52. Nag D. K., Huang H. V., Berg D. E. 1988; Bidirectional chain-termination nucleotide sequencing: transposon Tn5seq1 as a mobile source of primer sites. Gene 64:135–145
    [Google Scholar]
  53. Ng T. I., Keenan L., Kinchington P. R., Grose C. 1994; Phosphorylation of varicella-zoster virus open reading frame (ORF) 62 regulatory product by viral ORF 47-associated protein kinase. Journal of Virology 68:1350–1359
    [Google Scholar]
  54. Pak A. S., Everly D. N., Knight K., Read G. S. 1995; The virion host shutoff protein of herpes simplex virus inhibits reporter gene expression in the absence of other viral gene products. Virology 211:491–506
    [Google Scholar]
  55. Purchase H. G., Okazaki W., Burmester B. R. 1971; Field trials with the herpes virus of turkeys (HVT) strain FC126 as a vaccine against Marek’s disease. Poultry Science 50:775–783
    [Google Scholar]
  56. Purves F. C., Roizman B. 1992; The UL13 gene of herpes simplex virus 1 encodes the functions for posttranslational processing associated with phosphorylation of the regulatory protein alpha 22. Proceedings of the National Academy of Sciences, USA 89:7310–7314
    [Google Scholar]
  57. Purves F. C., Spector D., Roizman B. 1992; UL34, the target of the herpes simplex virus US3 protein kinase, is a membrane protein which in its unphosphorylated state associates with novel phosphoproteins. Journal of Virology 66:4295–4303
    [Google Scholar]
  58. Reed J. C. 1996; Mechanisms of Bcl-2 family protein function and dysfunction in health and disease. Behring Institute Mitteilungen 97:72–100
    [Google Scholar]
  59. Roizman B., Sears A. E. 1996; Herpes simplex viruses and their replication. In Fundamental Virology pp 1043–1107 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  60. Roop C., Hutchinson L., Johnson D. C. 1993; A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H. Journal of Virology 67:2285–2297
    [Google Scholar]
  61. Sandri-Goldin R. M. 1998; ICP27 mediates HSV RNA export by shuttling through a leucine-rich nuclear export signal and binding viral intronless RNAs through an RGG motif. Genes & Development 12:868–879
    [Google Scholar]
  62. Sarmiento M., Haffey M., Spear P. G. 1979; Membrane proteins specified by herpes simplex viruses. III. Role of glycoprotein VP7(B2) in virion infectivity. Journal of Virology 29:1149–1158
    [Google Scholar]
  63. Schat K. A., Calnek B. W. 1978; Characterization of apparently nononcogenic Marek’s disease virus. Journal of the National Cancer Institute 60:1075–1082
    [Google Scholar]
  64. Scott S. D., Ross N. L. J., Binns M. M. 1989; Nucleotide and predicted amino acid sequences of the Marek’s disease virus and turkey herpesvirus thymidine kinase genes; comparison with thymidine kinase genes of other herpesviruses. Journal of General Virology 70:3055–3065
    [Google Scholar]
  65. Scott S. D., Smith G. D., Ross N. L. J., Binns M. M. 1993; Identification and sequence analysis of the homologues of the herpes simplex virus type 1 glycoprotein H in Marek’s disease virus and the herpesvirus of turkeys. Journal of General Virology 74:1185–1190
    [Google Scholar]
  66. Shieh M. T., WuDunn D., Montgomery R. I., Esko J. D., Spear P. G. 1992; Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. Journal of Cell Biology 116:1273–1281
    [Google Scholar]
  67. Smith G. D., Zelník V., Ross L. J. 1995; Gene organization in herpesvirus of turkeys: identification of a novel open reading frame in the long unique region and a truncated homologue of pp38 in the internal repeat. Virology 207:205–216
    [Google Scholar]
  68. Spear P. G., Shieh M. T., Herold B. C., WuDunn D., Koshy T. I. 1992; Heparan sulfate glycosaminoglycans as primary cell surface receptors for herpes simplex virus. Advances in Experimental Medicine and Biology 313:341–353
    [Google Scholar]
  69. Telford E. A., Watson M. S., McBride K., Davison A. J. 1992; The DNA sequence of equine herpesvirus-1. Virology 189:304–316
    [Google Scholar]
  70. Tsushima Y., Jang H. K., Izumiya Y., Cai J. S., Kato K., Miyazawa T., Kai C., Takahashi E., Mikami T. 1999; Gene arrangement and RNA transcription of the Bam HI fragments K and M2 within the non-oncogenic Marek’s disease virus serotype 2 unique long genome region. Virus Research 60:101–110
    [Google Scholar]
  71. Tulman E. R., Afonso C. L., Lu Z., Zsak L., Rock D. L., Kutish G. F. 2000; The genome of a very virulent Marek’s disease virus. Journal of Virology 74:7980–7988
    [Google Scholar]
  72. Uberbacher E. C., Mural R. J. 1991; Locating protein-coding regions in human DNA sequences by a multiple sensor–neural network approach. Proceedings of the National Academy of Sciences, USA 88:11261–11265
    [Google Scholar]
  73. Wu S. X., Zhu X. P., Letchworth G. J. 1998; Bovine herpesvirus 1 glycoprotein M forms a disulfide-linked heterodimer with the UL49.5 protein. Journal of Virology 72:3029–3036
    [Google Scholar]
  74. WuDunn D., Spear P. G. 1989; Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. Journal of Virology 63:52–58
    [Google Scholar]
  75. Xie Q., Anderson A. S., Morgan R. W. 1996; Marek’s disease virus (MDV) ICP4, pp38, and meq genes are involved in the maintenance of transformation of MDCC-MSB1 MDV-transformed lymphoblastoid cells. Journal of Virology 70:1125–1131
    [Google Scholar]
  76. Yanagida N., Yoshida S., Nazerian K., Lee L. F. 1993; Nucleotide and predicted amino acid sequences of Marek’s disease virus homologues of herpes simplex virus major tegument proteins. Journal of General Virology 74:1837–1845
    [Google Scholar]
  77. Zelník V., Darteil R., Audonnet J. C., Smith G. D., Riviere M., Pastorek J., Ross L. J. N. 1993; The complete sequence and gene organization of the short unique region of herpesvirus of turkeys. Journal of General Virology 74:2151–2162
    [Google Scholar]
  78. Zelník V., Ross N. L. J., Pastorek J. 1994; Characterization of proteins encoded by the short unique region of herpesvirus of turkeys by in vitro expression. Journal of General Virology 75:2747–2753
    [Google Scholar]
  79. Zelus B. D., Stewart R. S., Ross J. 1996; The virion host shutoff protein of herpes simplex virus type 1: messenger ribonucleolytic activity in vitro. Journal of Virology 70:2411–2419
    [Google Scholar]
  80. Zhang Y., Sirko D. A., McKnight J. L. 1991; Role of herpes simplex virus type 1 UL46 and UL47 in alpha TIF-mediated transcriptional induction: characterization of three viral deletion mutants. Journal of Virology 65:829–841
    [Google Scholar]
  81. Zhi Y., Sciabica K. S., Sandri-Goldin R. M. 1999; Self-interaction of the herpes simplex virus type 1 regulatory protein ICP27. Virology 257:341–351
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-5-1123
Loading
/content/journal/jgv/10.1099/0022-1317-82-5-1123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error