1887

Abstract

The mutant spectrum of a virus quasispecies in the process of fitness gain of a debilitated foot-and-mouth disease virus (FMDV) clone has been analysed. The mutant spectrum was characterized by nucleotide sequencing of three virus genomic regions (internal ribosome entry site; region between the two AUG initiation codons; VP1-coding region) from 70 biological clones (virus from individual plaques formed on BHK-21 cell monolayers) and 70 molecular clones (RT–PCR products cloned in ). The biological and molecular clones provided statistically indistinguishable definitions of the mutant spectrum with regard to the distribution of mutations among the three genomic regions analysed and with regard to the types of mutations, mutational hot-spots and mutation frequencies. Therefore, the molecular cloning procedure employed provides a simple protocol for the characterization of mutant spectra of viruses that do not grow in cell culture. The number of mutations found repeated among the clones analysed was higher than expected from the mean mutation frequencies. Some components of the mutant spectrum reflected genomes that were dominant in the prior evolutionary history of the virus (previous passages), confirming the presence of memory genomes in virus quasispecies. Other components of the mutant spectrum were genomes that became dominant at a later stage of evolution, suggesting a predictive value of mutant spectrum analysis with regard to the outcome of virus evolution. The results underline the observation that greater insight into evolutionary processes of viruses may be gained from detailed clonal analyses of the mutant swarms at the sequence level.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-5-1049
2001-05-01
2024-11-04
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/5/0821049a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-5-1049&mimeType=html&fmt=ahah

References

  1. Barnes W. M. 1994; PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proceedings of the National Academy of Sciences, USA 91:2216–2220
    [Google Scholar]
  2. Batschelet E., Domingo E., Weissmann C. 1976; The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene 1:27–32
    [Google Scholar]
  3. Belsham G. J. 1993; Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family; aspects of virus protein synthesis, protein processing and structure. Progress in Biophysics & Molecular Biology 60:241–260
    [Google Scholar]
  4. Berinstein A., Roivainen M., Hovi T., Mason P. W., Baxt B. 1995; Antibodies to the vitronectin receptor (integrin αV β3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. Journal of Virology 69:2664–2666
    [Google Scholar]
  5. Biebricher C. K. 1999; Mutation, competition and selection as measured with small RNA molecules. In Origin and Evolution of Viruses pp 65–85 Edited by Domingo E., Webster R. G., Holland J. J. San Diego: Academic Press;
    [Google Scholar]
  6. Borrego B., Novella I. S., Giralt E., Andreu D., Domingo E. 1993; Distinct repertoire of antigenic variants of foot-and-mouth disease virus in the presence or absence of immune selection. Journal of Virology 67:6071–6079
    [Google Scholar]
  7. Chao L. 1990; Fitness of RNA virus decreased by Muller’s ratchet. Nature 348:454–455
    [Google Scholar]
  8. Cline J., Braman J. C., Hogrefe H. H. 1996; PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Research 24:3546–3551
    [Google Scholar]
  9. de la Torre J. C., Martínez-Salas E., Diez J., Villaverde A., Gebauer F., Rocha E., Dávila M., Domingo E. 1988; Coevolution of cells and viruses in a persistent infection of foot-and-mouth disease virus in cell culture. Journal of Virology 62:2050–2058
    [Google Scholar]
  10. Denver D. R., Morris K., Lynch M., Vassilieva L. L., Thomas W. K. 2000; High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans . Science 289:2342–2344
    [Google Scholar]
  11. Díez J., Mateu M. G., Domingo E. 1989; Selection of antigenic variants of foot-and-mouth disease virus in the absence of antibodies, as revealed by an in situ assay. Journal of General Virology 70:3281–3289
    [Google Scholar]
  12. Domingo E. 2000; Viruses at the edge of adaptation. Virology 270:251–253
    [Google Scholar]
  13. Domingo E., Sabo D., Taniguchi T., Weissmann C. 1978; Nucleotide sequence heterogeneity of an RNA phage population. Cell 13:735–744
    [Google Scholar]
  14. Domingo E., Holland J. J., Ahlquist P. (editors) 1988 RNA Genetics Boca Raton, FL: CRC Press;
  15. Domingo E., Biebricher C., Eigen M., Holland J. J. 2001 Quasispecies and RNA Virus Evolution: Principles and Consequences Austin, TX: Landes Bioscience;
  16. Drake J. W., Holland J. J. 1999; Mutation rates among RNA viruses. Proceedings of the National Academy of Sciences, USA 96:13910–13913
    [Google Scholar]
  17. Duarte E., Clarke D., Moya A., Domingo E., Holland J. 1992; Rapid fitness losses in mammalian RNA virus clones due to Muller’s ratchet. Proceedings of the National Academy of Sciences, USA 89:6015–6019
    [Google Scholar]
  18. Eigen M. 1971; Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523
    [Google Scholar]
  19. Eigen M., Biebricher C. K. 1988; Sequence space and quasispecies distribution. In RNA Genetics pp 211–245 Edited by Domingo E., Ahlquist P., Holland J. J. Boca Raton, FL: CRC Press;
    [Google Scholar]
  20. Escarmís C., Dávila M., Charpentier N., Bracho A., Moya A., Domingo E. 1996; Genetic lesions associated with Muller’s ratchet in an RNA virus. Journal of Molecular Biology 264:255–267
    [Google Scholar]
  21. Escarmís C., Dávila M., Domingo E. 1999; Multiple molecular pathways for fitness recovery of an RNA virus debilitated by operation of Muller’s ratchet. Journal of Molecular Biology 285:495–505
    [Google Scholar]
  22. Esteban J. I., Martell M., Carman W. F., Gomez J. 1999; The impact of rapid evolution of the hepatitis viruses. In Origin and Evolution of Viruses pp 345–376 Edited by Domingo E., Webster R. G., Holland J. J. San Diego: Academic Press;
    [Google Scholar]
  23. Farci P., Shimoda A., Coiana A., Diaz G., Peddis G., Melpolder J. C., Strazzera A., Chien D. Y., Munoz S. J., Balestrieri A., Purcell R. H., Alter H. J. 2000; The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science 288:339–344
    [Google Scholar]
  24. Flint S. J., Enquist L. W., Krug R. M., Racaniello V. R., Skalka A. M. 2000 Virology. Molecular Biology, Pathogenesis and Control Washington, DC: American Society for Microbiology;
  25. Forns X., Purcell R. H., Bukh J. 1999; Quasispecies in viral persistence and pathogenesis of hepatitis C virus. Trends in Microbiology 7:402–410
    [Google Scholar]
  26. Funchain P., Yeung A., Stewart J. L., Lin R., Slupska M. M., Miller J. H. 2000; The consequences of growth of a mutator strain of Escherichia coli as measured by loss of function among multiple gene targets and loss of fitness. Genetics 154:959–970
    [Google Scholar]
  27. Holland J. J., Grabau E. A., Jones C. L., Semler B. L. 1979; Evolution of multiple genome mutations during long-term persistent infection by vesicular stomatitis virus. Cell 16:495–504
    [Google Scholar]
  28. Holland J. J., de la Torre J. C., Clarke D. K., Duarte E. 1991; Quantitation of relative fitness and great adaptability of clonal populations of RNA viruses. Journal of Virology 65:2960–2967
    [Google Scholar]
  29. Holland J. J., de la Torre J. C., Steinhauer D. A. 1992; RNA virus populations as quasispecies. Current Topics in Microbiology and Immunology 176:1–20
    [Google Scholar]
  30. Kuge S., Kawamura N., Nomoto A. 1989; Strong inclination toward transition mutation in nucleotide substitutions by poliovirus replicase. Journal of Molecular Biology 207:175–182
    [Google Scholar]
  31. Martínez-Salas E., Regalado M. P., Domingo E. 1996; Identification of an essential region for internal initiation of translation in the aphthovirus internal ribosome entry site and implications for viral evolution. Journal of Virology 70:992–998
    [Google Scholar]
  32. Mason P. W., Rieder E., Baxt B. 1994; RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proceedings of the National Academy of Sciences, USA 91:1932–1936
    [Google Scholar]
  33. Nájera I., Holguín A., Quiñones-Mateu M. E., Muñoz-Fernández M. A., Nájera R., López-Galíndez C., Domingo E. 1995; Pol gene quasispecies of human immunodeficiency virus: mutations associated with drug resistance in virus from patients undergoing no drug therapy. Journal of Virology 69:23–31
    [Google Scholar]
  34. Novella I. S., Clarke D. K., Quer J., Duarte E. A., Lee C. H., Weaver S. C., Elena S. F., Moya A., Domingo E., Holland J. J. 1995a; Extreme fitness differences in mammalian and insect hosts after continuous replication of vesicular stomatitis virus in sandfly cells. Journal of Virology 69:6805–6809
    [Google Scholar]
  35. Novella I. S., Duarte E. A., Elena S. F., Moya A., Domingo E., Holland J. J. 1995b; Exponential increases of RNA virus fitness during large population transmissions. Proceedings of the National Academy of Sciences, USA 92:5841–5844
    [Google Scholar]
  36. Novella I. S., Elena S. F., Moya A., Domingo E., Holland J. J. 1995c; Size of genetic bottlenecks leading to virus fitness loss is determined by mean initial population fitness. Journal of Virology 69:2869–2872
    [Google Scholar]
  37. Nowak M. A. 1992; What is a quasispecies?. Trends In Ecology & Evolution 4:118–121
    [Google Scholar]
  38. Pawlotsky J. M., Germanidis G., Neumann A. U., Pellerin M., Frainais P. O., Dhumeaux D. 1998; Interferon resistance of hepatitis C virus genotype 1b: relationship to nonstructural 5A gene quasispecies mutations. Journal of Virology 72:2795–2805
    [Google Scholar]
  39. Pilipenko E. V., Blinov V. M., Chernov B. K., Dmitrieva T. M., Agol V. I. 1989; Conservation of the secondary structure elements of the 5′-untranslated region of cardio- and aphthovirus RNAs. Nucleic Acids Research 17:5701–5711
    [Google Scholar]
  40. Quiñones-Mateu M. E., Ball S. C., Marozsan A. J., Torre V. S., Albright J. L., Vanham G., van der Groen G., Colebunders R. L., Arts E. J. 2000; A dual infection/competition assay shows a correlation between ex vivo human immunodeficiency virus type 1 fitness and disease progression. Journal of Virology 74:9222–9233
    [Google Scholar]
  41. Ripley L. S. 1990; Frameshift mutation: determinants of specificity. Annual Review of Genetics 24:189–213
    [Google Scholar]
  42. Rohde N., Daum H., Biebricher C. K. 1995; The mutant distribution of an RNA species replicated by Qβ replicase. Journal of Molecular Biology 249:754–762
    [Google Scholar]
  43. Rowe C. L., Baker S. C., Nathan M. J., Fleming J. O. 1997; Evolution of mouse hepatitis virus: detection and characterization of spike deletion variants during persistent infection. Journal of Virology 71:2959–2969
    [Google Scholar]
  44. Rueckert R. R. 1996; Picornaviridae : the viruses and their replication. In Fields Virology pp 609–654 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  45. Ruiz-Jarabo C. M., Arias A., Baranowski E., Escarmís C., Domingo E. 2000; Memory in viral quasispecies. Journal of Virology 74:3543–3547
    [Google Scholar]
  46. Ryan M. D., Flint M. 1997; Virus-encoded proteinases of the picornavirus super-group. Journal of General Virology 78:699–723
    [Google Scholar]
  47. Saenger W. 1984 Principles of Nucleic Acid Structure New York: Springer;
  48. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  49. Schneider W. L., Roossinck M. J. 2000; Evolutionarily related Sindbis-like plant viruses maintain different levels of population diversity in a common host. Journal of Virology 74:3130–3134
    [Google Scholar]
  50. Sevilla N., Verdaguer N., Domingo E. 1996; Antigenically profound amino acid substitutions occur during large population passages of foot-and-mouth disease virus. Virology 225:400–405
    [Google Scholar]
  51. Sobrino F., Dávila M., Ortín J., Domingo E. 1983; Multiple genetic variants arise in the course of replication of foot-and-mouth disease virus in cell culture. Virology 128:310–318
    [Google Scholar]
  52. Sobrino F., Sáiz M., Jiménez-Clavero M. A., Núñez J. I., Rosas M. F., Baranowski E., Ley V. 2001; Foot-and-mouth disease virus: a long known virus, but a current threat. Veterinary Research 32:1–30
    [Google Scholar]
  53. Spindler K. R., Horodyski F. M., Holland J. J. 1982; High multiplicities of infection favor rapid and random evolution of vesicular stomatitis virus. Virology 119:96–108
    [Google Scholar]
  54. Streisinger G., Okada Y., Emrich J., Newton J., Tsugita A., Terzaghi E. 1966; Frameshift mutations and the genetic code. Cold Spring Harbor Symposia on Quantitative Biology 31:77–84
    [Google Scholar]
  55. Toja M., Escarmis C., Domingo E. 1999; Genomic nucleotide sequence of a foot-and-mouth disease virus clone and its persistent derivatives. Implications for the evolution of viral quasispecies during a persistent infection. Virus Research 64:161–171
    [Google Scholar]
  56. Verdaguer N., Mateu M. G., Andreu D., Giralt E., Domingo E., Fita I. 1995; Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg–Gly–Asp motif in the interaction. EMBO Journal 14:1690–1696
    [Google Scholar]
  57. Weaver S. C., Brault A. C., Kang W., Holland J. J. 1999; Genetic and fitness changes accompanying adaptation of an arbovirus to vertebrate and invertebrate cells. Journal of Virology 73:4316–4326
    [Google Scholar]
  58. Yuste E., Sánchez-Palomino S., Casado C., Domingo E., López-Galíndez C. 1999; Drastic fitness loss in human immunodeficiency virus type 1 upon serial bottleneck events. Journal of Virology 73:2745–2751
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-82-5-1049
Loading
/content/journal/jgv/10.1099/0022-1317-82-5-1049
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error