1887

Abstract

The role of B, CD4 T and CD8 T cells in both primary genital infection with attenuated herpes simplex virus type 2 (HSV-2) and development of protective immunity to a later challenge with virulent HSV-2 using lymphocyte-deficient mice has been elucidated. Following primary inoculation with attenuated thymidine kinase-deficient (TK) HSV-2, B cell-deficient (μMT) mice developed a local viraemia and transient genital inflammation, suggesting a role for B cells in the innate control of local infection and inflammation. Natural antibodies are implicated in this process, as passive transfer of normal serum into μMT mice significantly reduced HSV-2 TK shedding in the vaginal lumen, although it did not affect subsequent inflammation. Protection against lethal HSV-2 challenge was noted in HSV-2-vaccinated wild-type, CD8 T cell-deficient and μMT mice and was characterized by strong virus-specific IFN-γ responses and delayed type hypersensitivity (DTH) responses . In contrast, CD4 T cell-deficient (CD4) mice had impaired HSV-2-specific IFN-γ production and DTH responses and succumbed rapidly to genital HSV-2 challenge. However, protective responses to HSV-2 could be induced in HSV-2-vaccinated CD4 mice by treatment with recombinant IFN-γ. Taken together, these results suggest that CD4 T cells secreting IFN-γ are critical for immune protection against lethal genital HSV-2 re-infection, whereas B cells/natural antibodies have anti-viral and -inflammatory effects in the innate control of a primary infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-4-845
2001-04-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/4/0820845a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-4-845&mimeType=html&fmt=ahah

References

  1. Adler H., Beland J. L., Del-Pan N. C., Kobzik L., Sobel R. A., Rimm I. J. 1999; In the absence of T-cells, natural killer cells protect from mortality due to HSV-1 encephalitis. Journal of Neuroimmunology 93:208–213
    [Google Scholar]
  2. Andrei G., Snoeck R., De Clerq E. 1997; Differential susceptibility of several drug-resistant strains of herpes simplex virus type 2 to various antiviral compounds. Antiviral Chemistry & Chemotherapy 8:457–461
    [Google Scholar]
  3. Beech J. T., Bainbridge T., Thompson S. J. 1997; Incorporation of cells into an ELISA system enhances antigen-driven lymphokine detection. Journal of Immunological Methods 205:163–168
    [Google Scholar]
  4. Benencia F., Courreges M. C. 1999; Nitric oxide and macrophage antiviral extrinsic activity. Immunology 98:363–370
    [Google Scholar]
  5. Da Costa X. J., Brockman M. A., Alicot E., Ma M., Fischer M. B., Zhou X., Knipe D. M., Carroll M. C. 1999; Humoral response to herpes simplex virus is complement dependent. Proceedings of the National Academy of Sciences, USA 96:12708–12712
    [Google Scholar]
  6. Deshpande S., Kumaraguru U., Rouse B. 2000; Dual role of B cells in mediating innate and acquired immunity to herpes simplex virus infection. Cellular Immunology 202:79–87
    [Google Scholar]
  7. De Stasio P. R., Taylor M. W. 1990; Specific effect of interferon on the herpes simplex virus type 1 transactivation event. Journal of Virology 64:2588–2593
    [Google Scholar]
  8. Dudley K. L., Bourne N., Milligan G. N. 2000; Immune protection against HSV-2 in B-cell-deficient mice. Virology 270:454–463
    [Google Scholar]
  9. Dustin M. L., Rothlein R., Bhan A. K., Dinarello C. A., Springer T. A. 1986; Induction by IL-1 and interferon-γ: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). Journal of Immunology 137:245–254
    [Google Scholar]
  10. Eis-Hübinger A. M., Mohr K., Schneweis K. E. 1991; Different mechanisms of protection by monoclonal and polyclonal antibodies during the course of herpes simplex virus infection. Intervirology 32:351–360
    [Google Scholar]
  11. Eis-Hübinger A. M., Schmidt D. S., Schneweis K. E. 1993; Anti-glycoprotein B monoclonal antibody protects T cell-depleted mice against herpes simplex virus infection by inhibition of virus replication at the inoculated mucous membranes. Journal of General Virology 74:379–385
    [Google Scholar]
  12. Fong T. A., Mosmann T. R. 1989; The role of IFN-γ in delayed type hypersensitivity. Journal of Immunology 143:2887–2893
    [Google Scholar]
  13. Fung-Leung W.-P., Schilham M. W., Rahemtulla A., Kuendig T. M., Vollenwieder M., Potter J., van Ewijk W., Mak T. W. 1991; CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell 65:443–449
    [Google Scholar]
  14. Jeansson S., Forsgren M., Svennerholm B. 1983; Evaluation of solubilized herpes simplex virus membrane antigen by enzyme-linked immunosorbent assay. Journal of Clinical Microbiology 18:1160–1166
    [Google Scholar]
  15. Kinghorn G. R. 1994; Epidemiology of genital herpes. Journal of International Medical Research 22:14A–23A
    [Google Scholar]
  16. Kino Y., Eto T., Ohtomo N., Hayashi Y., Yamamoto M., Mori R. 1985; Passive immunization of mice with monoclonal antibodies to glycoprotein gB of herpes simplex virus. Microbiology and Immunology 29:143–149
    [Google Scholar]
  17. Kitamura D., Roes J., Kuhn R., Rajewsky K. 1991; A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350:423–426
    [Google Scholar]
  18. Koelle D. M., Abbo H., Peck A., Ziegweid K., Corey L. 1994; Direct recovery of herpes simplex virus (HSV)-specific T lymphocyte clones from recurrent genital HSV-2 lesions. Journal of Infectious Diseases 169:956–961
    [Google Scholar]
  19. Koelle D. M., Posavad C. M., Barnum G. R., Johnson M. L., Frank J. M., Corey L. 1998; Clearance of HSV-2 from recurrent genital lesions correlates with infiltration of HSV-specific cytotoxic T lymphocytes. Journal of Clinical Investigation 101:1500–1508
    [Google Scholar]
  20. Krzysiek R., Lefevre E. A., Zou W., Foussat A., Bernard J., Portier A., Galanaud P., Richard Y. 1999; Antigen receptor engagement selectively induces macrophage inflammatory protein-1 alpha (MIP-1 alpha) and MIP-1 beta chemokine production in human B cells. Journal of Immunology 162:4455–4463
    [Google Scholar]
  21. Kuklin N. A., Daheshia M., Chun S., Rouse B. T. 1998; Role of mucosal immunity in herpes simplex virus infection. Journal of Immunology 160:5998–6003
    [Google Scholar]
  22. Liles W. C., van Voorhis W. 1995; Nomenclature and biologic significance of cytokines involved in inflammation and the host immune response. Journal of Infectious Diseases 172:1573–1580
    [Google Scholar]
  23. McDermott M. R., Smiley J. R., Brais L. J., Rudzroga H. E., Bienenstock J. 1984; Immunity in the female genital tract after intravaginal vaccination of mice with an attenuated strain of herpes simplex virus type 2. Journal of Virology 51:747–753
    [Google Scholar]
  24. McDermott M. R., Goldsmith C. H., Rosenthal K. L., Brais L. J. 1989; T lymphocytes in genital lymph nodes protect mice from intravaginal infection with herpes simplex virus type 2. Journal of Infectious Diseases 159:460–466
    [Google Scholar]
  25. Martin S., Rouse B. T. 1987; The mechanisms of antiviral immunity induced by a vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D: clearance of local infection. Journal of Immunology 138:3431–3437
    [Google Scholar]
  26. Milligan G. N. 1999; Neutrophils aid in protection of the vaginal mucosae of immune mice against challenge with herpes simplex virus type 2. Journal of Virology 73:6380–6386
    [Google Scholar]
  27. Milligan G. N., Bernstein D. I. 1997; Interferon-gamma enhances resolution of herpes simplex virus type 2 infection of the murine genital tract. Virology 229:259–268
    [Google Scholar]
  28. Milligan G. N., Bernstein D. I., Bourne N. 1998; T lymphocytes are required for protection of the vaginal mucosae and sensory ganglia of immune mice against reinfection with herpes simplex virus type 2. Journal of Immunology 160:6093–6100
    [Google Scholar]
  29. Minato N., Reid L., Neighbour A., Bloom B. R., Holland J. 1980; Interferon, NK cells and persistent virus infection. Annals of the New York Academy of Sciences 350:42–52
    [Google Scholar]
  30. Morrison L. A., Da Costa X. J., Knipe D. M. 1998; Influence of mucosal and parenteral immunization with a replication-defective mutant of HSV-2 on immune responses and protection from genital challenge. Virology 243:178–187
    [Google Scholar]
  31. Nahmias A. J., Lee F. K., Beckman-Nahmias S. 1990; Sero-epidemiological and -sociological patterns of herpes simplex virus infection in the world. Scandinavian Journal of Infectious Diseases Supplementum 69:19–36
    [Google Scholar]
  32. Ochsenbein A. F., Fehr T., Lutz C., Suter M., Brombacher F., Hengartner H., Zinkernagel R. M. 1999; Control of early viral and bacterial distribution and disease by natural antibodies. Science 286:2156–2159
    [Google Scholar]
  33. Parr E. L., Parr M. B. 1997; Immunoglobulin G is the main protective antibody in mouse vaginal secretions after vaginal immunization with attenuated herpes simplex virus type 2. Journal of Virology 71:8109–8115
    [Google Scholar]
  34. Parr M. B., Parr E. L. 1998; Mucosal immunity to herpes simplex virus type 2 in the mouse vagina is impaired by in vivo depletion of T lymphocytes. Journal of Virology 72:2677–2685
    [Google Scholar]
  35. Parr M. B., Parr E. L. 1999; The role of gamma interferon in immune resistance to vaginal infection by herpes simplex virus type 2 in mice. Virology 258:282–294
    [Google Scholar]
  36. Parr M. B., Kepple L., McDermott M., Drew M. D., Bozzola J. J., Parr E. L. 1994; A mouse model for studies of mucosal immunity to vaginal infection by herpes simplex virus type 2. Laboratory Investigation 70:369–380
    [Google Scholar]
  37. Posavad C. M., Huang M. L., Barcy S., Koelle D. M., Corey L. 2000; Long term persistence of herpes simplex virus-specific CD8+ CTL in persons with frequently recurring genital herpes. Journal of Immunology 165:1146–1152
    [Google Scholar]
  38. Rahemtulla A., Fung-Leung W. P., Schilham M. M., Kundig T. M., Sambhara S. R., Narendran A., Arabian A., Wakeham A., Paige C. J., Zinkernagel R. M., Miller R. G., Mak T. W. 1991; Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature 353:180–184
    [Google Scholar]
  39. Seth P., Rawls W. E., Duff R., Rap F., Adam E., Melnick J. L. 1974; Antigenic differences between isolates of herpesvirus type 2. Intervirology 3:1–14
    [Google Scholar]
  40. Whaley K. J., Zeitlin L., Barratt R. A., Hoen T. E., Cone R. A. 1994; Passive immunization of the vagina protects mice against vaginal transmission of genital herpes infections. Journal of Infectious Diseases 169:647–649
    [Google Scholar]
  41. Yuan D., Koh C. Y., Wilder J. A. 1994; Interactions between B lymphocytes and NK cells. FASEB Journal 8:1012–1018
    [Google Scholar]
  42. Zhao Y. X., Nilsson I. M., Tarkowski A. 1998; The dual role of interferon-gamma in experimental Staphylococcus septicaemia versus arthritis. Immunology 93:80–85
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-4-845
Loading
/content/journal/jgv/10.1099/0022-1317-82-4-845
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error