1887

Abstract

The role of B, CD4 T and CD8 T cells in both primary genital infection with attenuated herpes simplex virus type 2 (HSV-2) and development of protective immunity to a later challenge with virulent HSV-2 using lymphocyte-deficient mice has been elucidated. Following primary inoculation with attenuated thymidine kinase-deficient (TK) HSV-2, B cell-deficient (μMT) mice developed a local viraemia and transient genital inflammation, suggesting a role for B cells in the innate control of local infection and inflammation. Natural antibodies are implicated in this process, as passive transfer of normal serum into μMT mice significantly reduced HSV-2 TK shedding in the vaginal lumen, although it did not affect subsequent inflammation. Protection against lethal HSV-2 challenge was noted in HSV-2-vaccinated wild-type, CD8 T cell-deficient and μMT mice and was characterized by strong virus-specific IFN-γ responses and delayed type hypersensitivity (DTH) responses . In contrast, CD4 T cell-deficient (CD4) mice had impaired HSV-2-specific IFN-γ production and DTH responses and succumbed rapidly to genital HSV-2 challenge. However, protective responses to HSV-2 could be induced in HSV-2-vaccinated CD4 mice by treatment with recombinant IFN-γ. Taken together, these results suggest that CD4 T cells secreting IFN-γ are critical for immune protection against lethal genital HSV-2 re-infection, whereas B cells/natural antibodies have anti-viral and -inflammatory effects in the innate control of a primary infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-4-845
2001-04-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/4/0820845a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-4-845&mimeType=html&fmt=ahah

References

  1. Adler, H., Beland, J. L., Del-Pan, N. C., Kobzik, L., Sobel, R. A. & Rimm, I. J. ( 1999; ). In the absence of T-cells, natural killer cells protect from mortality due to HSV-1 encephalitis. Journal of Neuroimmunology 93, 208-213.[CrossRef]
    [Google Scholar]
  2. Andrei, G., Snoeck, R. & De Clerq, E. ( 1997; ). Differential susceptibility of several drug-resistant strains of herpes simplex virus type 2 to various antiviral compounds. Antiviral Chemistry & Chemotherapy 8, 457-461.[CrossRef]
    [Google Scholar]
  3. Beech, J. T., Bainbridge, T. & Thompson, S. J. ( 1997; ). Incorporation of cells into an ELISA system enhances antigen-driven lymphokine detection. Journal of Immunological Methods 205, 163-168.[CrossRef]
    [Google Scholar]
  4. Benencia, F. & Courreges, M. C. ( 1999; ). Nitric oxide and macrophage antiviral extrinsic activity. Immunology 98, 363-370.[CrossRef]
    [Google Scholar]
  5. Da Costa, X. J., Brockman, M. A., Alicot, E., Ma, M., Fischer, M. B., Zhou, X., Knipe, D. M. & Carroll, M. C. ( 1999; ). Humoral response to herpes simplex virus is complement dependent. Proceedings of the National Academy of Sciences, USA 96, 12708-12712.[CrossRef]
    [Google Scholar]
  6. Deshpande, S., Kumaraguru, U. & Rouse, B. ( 2000; ). Dual role of B cells in mediating innate and acquired immunity to herpes simplex virus infection. Cellular Immunology 202, 79-87.[CrossRef]
    [Google Scholar]
  7. De Stasio, P. R. & Taylor, M. W. ( 1990; ). Specific effect of interferon on the herpes simplex virus type 1 transactivation event. Journal of Virology 64, 2588-2593.
    [Google Scholar]
  8. Dudley, K. L., Bourne, N. & Milligan, G. N. ( 2000; ). Immune protection against HSV-2 in B-cell-deficient mice. Virology 270, 454-463.[CrossRef]
    [Google Scholar]
  9. Dustin, M. L., Rothlein, R., Bhan, A. K., Dinarello, C. A. & Springer, T. A. ( 1986; ). Induction by IL-1 and interferon-γ: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). Journal of Immunology 137, 245-254.
    [Google Scholar]
  10. Eis-Hübinger, A. M., Mohr, K. & Schneweis, K. E. ( 1991; ). Different mechanisms of protection by monoclonal and polyclonal antibodies during the course of herpes simplex virus infection. Intervirology 32, 351-360.
    [Google Scholar]
  11. Eis-Hübinger, A. M., Schmidt, D. S. & Schneweis, K. E. ( 1993; ). Anti-glycoprotein B monoclonal antibody protects T cell-depleted mice against herpes simplex virus infection by inhibition of virus replication at the inoculated mucous membranes. Journal of General Virology 74, 379-385.[CrossRef]
    [Google Scholar]
  12. Fong, T. A. & Mosmann, T. R. ( 1989; ). The role of IFN-γ in delayed type hypersensitivity. Journal of Immunology 143, 2887-2893.
    [Google Scholar]
  13. Fung-Leung, W.-P., Schilham, M. W., Rahemtulla, A., Kuendig, T. M., Vollenwieder, M., Potter, J., van Ewijk, W. & Mak, T. W. ( 1991; ). CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell 65, 443-449.[CrossRef]
    [Google Scholar]
  14. Jeansson, S., Forsgren, M. & Svennerholm, B. ( 1983; ). Evaluation of solubilized herpes simplex virus membrane antigen by enzyme-linked immunosorbent assay. Journal of Clinical Microbiology 18, 1160-1166.
    [Google Scholar]
  15. Kinghorn, G. R. ( 1994; ). Epidemiology of genital herpes. Journal of International Medical Research 22, 14A-23A.
    [Google Scholar]
  16. Kino, Y., Eto, T., Ohtomo, N., Hayashi, Y., Yamamoto, M. & Mori, R. ( 1985; ). Passive immunization of mice with monoclonal antibodies to glycoprotein gB of herpes simplex virus. Microbiology and Immunology 29, 143-149.[CrossRef]
    [Google Scholar]
  17. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. ( 1991; ). A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350, 423-426.[CrossRef]
    [Google Scholar]
  18. Koelle, D. M., Abbo, H., Peck, A., Ziegweid, K. & Corey, L. ( 1994; ). Direct recovery of herpes simplex virus (HSV)-specific T lymphocyte clones from recurrent genital HSV-2 lesions. Journal of Infectious Diseases 169, 956-961.[CrossRef]
    [Google Scholar]
  19. Koelle, D. M., Posavad, C. M., Barnum, G. R., Johnson, M. L., Frank, J. M. & Corey, L. ( 1998; ). Clearance of HSV-2 from recurrent genital lesions correlates with infiltration of HSV-specific cytotoxic T lymphocytes. Journal of Clinical Investigation 101, 1500-1508.[CrossRef]
    [Google Scholar]
  20. Krzysiek, R., Lefevre, E. A., Zou, W., Foussat, A., Bernard, J., Portier, A., Galanaud, P. & Richard, Y. ( 1999; ). Antigen receptor engagement selectively induces macrophage inflammatory protein-1 alpha (MIP-1 alpha) and MIP-1 beta chemokine production in human B cells. Journal of Immunology 162, 4455-4463.
    [Google Scholar]
  21. Kuklin, N. A., Daheshia, M., Chun, S. & Rouse, B. T. ( 1998; ). Role of mucosal immunity in herpes simplex virus infection. Journal of Immunology 160, 5998-6003.
    [Google Scholar]
  22. Liles, W. C. & van Voorhis, W. ( 1995; ). Nomenclature and biologic significance of cytokines involved in inflammation and the host immune response. Journal of Infectious Diseases 172, 1573-1580.[CrossRef]
    [Google Scholar]
  23. McDermott, M. R., Smiley, J. R., Brais, L. J., Rudzroga, H. E. & Bienenstock, J. ( 1984; ). Immunity in the female genital tract after intravaginal vaccination of mice with an attenuated strain of herpes simplex virus type 2. Journal of Virology 51, 747-753.
    [Google Scholar]
  24. McDermott, M. R., Goldsmith, C. H., Rosenthal, K. L. & Brais, L. J. ( 1989; ). T lymphocytes in genital lymph nodes protect mice from intravaginal infection with herpes simplex virus type 2. Journal of Infectious Diseases 159, 460-466.[CrossRef]
    [Google Scholar]
  25. Martin, S. & Rouse, B. T. ( 1987; ). The mechanisms of antiviral immunity induced by a vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D: clearance of local infection. Journal of Immunology 138, 3431-3437.
    [Google Scholar]
  26. Milligan, G. N. ( 1999; ). Neutrophils aid in protection of the vaginal mucosae of immune mice against challenge with herpes simplex virus type 2. Journal of Virology 73, 6380-6386.
    [Google Scholar]
  27. Milligan, G. N. & Bernstein, D. I. ( 1997; ). Interferon-gamma enhances resolution of herpes simplex virus type 2 infection of the murine genital tract. Virology 229, 259-268.[CrossRef]
    [Google Scholar]
  28. Milligan, G. N., Bernstein, D. I. & Bourne, N. ( 1998; ). T lymphocytes are required for protection of the vaginal mucosae and sensory ganglia of immune mice against reinfection with herpes simplex virus type 2. Journal of Immunology 160, 6093-6100.
    [Google Scholar]
  29. Minato, N., Reid, L., Neighbour, A., Bloom, B. R. & Holland, J. ( 1980; ). Interferon, NK cells and persistent virus infection. Annals of the New York Academy of Sciences 350, 42-52.[CrossRef]
    [Google Scholar]
  30. Morrison, L. A., Da Costa, X. J. & Knipe, D. M. ( 1998; ). Influence of mucosal and parenteral immunization with a replication-defective mutant of HSV-2 on immune responses and protection from genital challenge. Virology 243, 178-187.[CrossRef]
    [Google Scholar]
  31. Nahmias, A. J., Lee, F. K. & Beckman-Nahmias, S. ( 1990; ). Sero-epidemiological and -sociological patterns of herpes simplex virus infection in the world. Scandinavian Journal of Infectious Diseases Supplementum 69, 19-36.
    [Google Scholar]
  32. Ochsenbein, A. F., Fehr, T., Lutz, C., Suter, M., Brombacher, F., Hengartner, H. & Zinkernagel, R. M. ( 1999; ). Control of early viral and bacterial distribution and disease by natural antibodies. Science 286, 2156-2159.[CrossRef]
    [Google Scholar]
  33. Parr, E. L. & Parr, M. B. ( 1997; ). Immunoglobulin G is the main protective antibody in mouse vaginal secretions after vaginal immunization with attenuated herpes simplex virus type 2. Journal of Virology 71, 8109-8115.
    [Google Scholar]
  34. Parr, M. B. & Parr, E. L. ( 1998; ). Mucosal immunity to herpes simplex virus type 2 in the mouse vagina is impaired by in vivo depletion of T lymphocytes. Journal of Virology 72, 2677-2685.
    [Google Scholar]
  35. Parr, M. B. & Parr, E. L. ( 1999; ). The role of gamma interferon in immune resistance to vaginal infection by herpes simplex virus type 2 in mice. Virology 258, 282-294.[CrossRef]
    [Google Scholar]
  36. Parr, M. B., Kepple, L., McDermott, M., Drew, M. D., Bozzola, J. J. & Parr, E. L. ( 1994; ). A mouse model for studies of mucosal immunity to vaginal infection by herpes simplex virus type 2. Laboratory Investigation 70, 369-380.
    [Google Scholar]
  37. Posavad, C. M., Huang, M. L., Barcy, S., Koelle, D. M. & Corey, L. ( 2000; ). Long term persistence of herpes simplex virus-specific CD8+ CTL in persons with frequently recurring genital herpes. Journal of Immunology 165, 1146-1152.[CrossRef]
    [Google Scholar]
  38. Rahemtulla, A., Fung-Leung, W. P., Schilham, M. M., Kundig, T. M., Sambhara, S. R., Narendran, A., Arabian, A., Wakeham, A., Paige, C. J., Zinkernagel, R. M., Miller, R. G. & Mak, T. W. ( 1991; ). Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature 353, 180-184.[CrossRef]
    [Google Scholar]
  39. Seth, P., Rawls, W. E., Duff, R., Rap, F., Adam, E. & Melnick, J. L. ( 1974; ). Antigenic differences between isolates of herpesvirus type 2. Intervirology 3, 1-14.[CrossRef]
    [Google Scholar]
  40. Whaley, K. J., Zeitlin, L., Barratt, R. A., Hoen, T. E. & Cone, R. A. ( 1994; ). Passive immunization of the vagina protects mice against vaginal transmission of genital herpes infections. Journal of Infectious Diseases 169, 647-649.[CrossRef]
    [Google Scholar]
  41. Yuan, D., Koh, C. Y. & Wilder, J. A. ( 1994; ). Interactions between B lymphocytes and NK cells. FASEB Journal 8, 1012-1018.
    [Google Scholar]
  42. Zhao, Y. X., Nilsson, I. M. & Tarkowski, A. ( 1998; ). The dual role of interferon-gamma in experimental Staphylococcus septicaemia versus arthritis. Immunology 93, 80-85.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-4-845
Loading
/content/journal/jgv/10.1099/0022-1317-82-4-845
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error