1887

Abstract

Transgenic plants harbouring a defective interfering (DI) DNA of (ACMV) and control plants were inoculated with ACMV. Virus particles were purified from infected plants, separated in sucrose gradients and fractions were analysed by Southern blotting. Transgenic plant-derived virus particles taken from the top fractions of sucrose gradients contained DI DNA, middle fractions contained a mixture of genomic and DI DNA and bottom fractions contained a mixture of multimeric, genomic and DI DNA. Virus particles from selected top, middle and bottom fractions were analysed by electron microscopy. In fractions containing only DI DNA, isometric particles of 18–20 nm were detected. In fractions containing DI DNA as well as genomic size DNA, isometric and geminate particles were found. Fractions containing multimeric size DNA were found to comprise particles consisting of three subunits adjacent to geminate particles. From these data, it is concluded that the size of encapsidated DNA determines the multiplicity of ACMV particles.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-3-673
2001-03-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/3/0820673a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-3-673&mimeType=html&fmt=ahah

References

  1. Azzam O., Frazer J., de la Rosa D., Beaver J. S., Ahlquist P., Maxwell D. P. 1994; Whitefly transmission and efficient ssDNA accumulation of bean golden mosaic geminivirus require functional coat protein. Virology 204:289–296
    [Google Scholar]
  2. Boulton M. I., Steinkellner H., Donson J., Markham P. G., King D. I., Davies J. W. 1989; Mutational analysis of the virion-sense genes of maize streak virus. Journal of General Virology 70:2309–2323
    [Google Scholar]
  3. Briddon R. W., Markham P. G. 1995; Family Geminiviridae . In Virus Taxonomy. Sixth Report of the International Committee on Taxonomy of Viruses pp 158–165 Edited by Murphy F. A., Fauquet C. M., Bishop D. H. L., Ghabrial S. A., Jarvis A. W., Martelli G. P., Mayo M. A., Summers M. D. Vienna & New York: Springer-Verlag;
    [Google Scholar]
  4. Briddon R. W., Watts J., Markham P. G., Stanley J. 1989; The coat protein of beet curly top virus is essential for infectivity. Virology 172:628–633
    [Google Scholar]
  5. Briddon R. W., Pinner M. S., Stanley J., Markham P. G. 1990; Geminivirus coat protein gene replacement alters insect specificity. Virology 177:85–94
    [Google Scholar]
  6. Dry I. B., Krake L. R., Rigden J. E., Rezaian M. A. 1997; A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proceedings of the National Academy of Sciences, USA 94:7088–7093
    [Google Scholar]
  7. Frischmuth T. 1999; Genome of DNA viruses. In Molecular Biology of Plant Viruses pp 29–46 Edited by Mandahar C. L. Dordrecht: Kluwer;
    [Google Scholar]
  8. Frischmuth T., Stanley J. 1991; African cassava mosaic virus DI DNA interferes with the replication of both genomic components. Virology 183:539–544
    [Google Scholar]
  9. Frischmuth T., Stanley J. 1993; Strategies for the control of geminivirus diseases. Seminars in Virology 4:329–337
    [Google Scholar]
  10. Gardiner W. E., Sunter G., Brand L., Elmer J. S., Rogers S. G., Bisaro D. M. 1988; Genetic analysis of tomato golden mosaic virus: the coat protein is not required for systemic spread or symptom development. EMBO Journal 7:899–904
    [Google Scholar]
  11. Harding R. M., Burns T. M., Hafner G., Dietzgen R. G., Dale J. L. 1993; Nucleotide sequence of one component of the banana bunchy top virus genome contains a putative replicase gene. Journal of General Virology 74:323–328
    [Google Scholar]
  12. Harrison B. D. 1985; Advances in geminivirus research. Annual Review of Phytopathology 23:55–82
    [Google Scholar]
  13. Höfer P., Bedford I. D., Markham P. G., Jeske H., Frischmuth T. 1997; Coat protein gene replacement results in whitefly transmission of an insect nontransmissible geminivirus isolate. Virology 236:288–295
    [Google Scholar]
  14. Katul L., Maiss E., Morozov S. Y., Vetten H. J. 1997; Analysis of six DNA components of the faba bean necrotic yellows virus genome and their structural affinity to related plant virus genomes. Virology 233:247–259
    [Google Scholar]
  15. Klinkenberg F. A., Ellwood S., Stanley J. 1989; Fate of African cassava mosaic virus coat protein deletion mutants after agroinoculation. Journal of General Virology 70:1837–1844
    [Google Scholar]
  16. Lazarowitz S. G., Pinder A. J., Damsteegt V. D., Rogers S. G. 1989; Maize streak virus genes essential for systemic spread and symptom development. EMBO Journal 8:1023–1032
    [Google Scholar]
  17. MacDowell S. W., Coutts R. H., Buck K. W. 1986; Molecular characterization of subgenomic single-stranded and double-stranded DNA forms isolated from plants infected with tomato golden mosaic virus. Nucleic Acids Research 14:7967–7984
    [Google Scholar]
  18. Mansoor S., Khan S. H., Bashir A., Saeed M., Zafar Y., Malik K. A., Briddon R., Stanley J., Markham P. G. 1999; Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 259:190–199
    [Google Scholar]
  19. Rohde W., Randles J. W., Langridge P., Hanold D. 1990; Nucleotide sequence of a circular single-stranded DNA associated with coconut foliar decay virus. Virology 176:648–651
    [Google Scholar]
  20. Saunders K., Stanley J. 1999; A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides : evidence for interfamilial recombination between plant DNA viruses. Virology 264:142–152
    [Google Scholar]
  21. Saunders K., Bedford I. D., Briddon R. W., Markham P. G., Wong S. M., Stanley J. 2000; A unique virus complex causes Ageratum yellow vein disease. Proceedings of the National Academy of Sciences, USA 97:6890–6895
    [Google Scholar]
  22. Sequeira J. C., Harrison B. D. 1982; Serological studies on cassava latent virus. Annals of Applied Biology 101:33–42
    [Google Scholar]
  23. Stanley J., Gay M. R. 1983; Nucleotide sequence of cassava latent virus DNA. Nature 301:260–263
    [Google Scholar]
  24. Stanley J., Townsend R. 1986; Infectious mutants of cassava latent virus generated in vivo from intact recombinant DNA clones containing single copies of the genome. Nucleic Acids Research 14:5981–5998
    [Google Scholar]
  25. Stanley J., Frischmuth T., Ellwood S. 1990; Defective viral DNA ameliorates symptoms of geminivirus infection in transgenic plants. Proceedings of the National Academy of Sciences, USA 87:6291–6295
    [Google Scholar]
  26. Stanley J., Saunders K., Pinner M. S., Wong S. M. 1997; Novel defective interfering DNAs associated with ageratum yellow vein geminivirus infection of Ageratum conyzoides . Virology 239:87–96
    [Google Scholar]
  27. von Arnim A., Frischmuth T., Stanley J. 1993; Detection and possible functions of African cassava mosaic virus DNA B gene products. Virology 192:264–272
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-3-673
Loading
/content/journal/jgv/10.1099/0022-1317-82-3-673
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error