1887

Abstract

In the bipartite geminivirus tomato golden mosaic virus (TGMV), the activity of late gene promoters is up-regulated by the multifunctional viral protein AL2. -acting sequences required for AL2-mediated promoter responses have not been well characterized. However, nucleotide sequence analysis has implicated a motif termed the conserved late element (CLE). The CLE is present in TGMV and many other begomoviruses, although it is not ubiquitous. Here we analysed the regulation of late gene expression in bean golden mosaic virus (BGMV), one of the begomoviruses which lacks the CLE. Transient reporter gene assays showed that BGMV late gene promoters were -activated in protoplasts, both by the homologous BGMV AL2 protein and by the heterologous TGMV AL2 protein. The BGMV AL2 protein also -activated TGMV late gene promoters. Consistent with these results, we found that hybrid viruses with the late gene promoters exchanged between BGMV and TGMV were viable .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-3-667
2001-03-01
2020-11-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/3/0820667a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-3-667&mimeType=html&fmt=ahah

References

  1. Argüello-Astorga G. R., Guevara-González R. G., Herrera-Estrella L. R., Rivera-Bustamante R. F.. 1994; Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology203:90–100
    [Google Scholar]
  2. Brough C. L., Hayes R. J., Morgan A. J., Coutts R. H. A., Buck K. W.. 1988; Effects of mutagenesis in vitro on the ability of cloned tomato golden mosaic virus DNA to infect Nicotiana benthamiana plants. Journal of General Virology69:503–514
    [Google Scholar]
  3. Fontes E. P. B., Gladfelter H. J., Schaffer R. L., Petty I. T. D., Hanley-Bowdoin L.. 1994; Geminivirus replication origins have a modular organization. Plant Cell6:405–416
    [Google Scholar]
  4. Frischmuth T., Stanley J.. 1991; African cassava mosaic virus DI DNA interferes with the replication of both genomic components. Virology183:539–544
    [Google Scholar]
  5. Gardiner W. E., Sunter G., Brand L., Elmer J. S., Rogers S. G., Bisaro D. M.. 1988; Genetic analysis of tomato golden mosaic virus: the coat protein is not required for systemic spread or symptom development. EMBO Journal7:899–904
    [Google Scholar]
  6. Gillette W. K., Meade T. J., Jeffrey J. L., Petty I. T. D.. 1998; Genetic determinants of host-specificity in bipartite geminivirus DNA A components. Virology251:361–369
    [Google Scholar]
  7. Hamilton W. D. O., Stein V. E., Coutts R. H. A., Buck K. W.. 1984; Complete nucleotide sequence of the infectious cloned DNA components of tomato golden mosaic virus: potential coding regions and regulatory sequences. EMBO Journal3:2197–2205
    [Google Scholar]
  8. Hartitz M. D., Sunter G., Bisaro D. M.. 1999; The tomato golden mosaic virus transactivator (TrAP) is a single-stranded DNA and zinc-binding phosphoprotein with an acidic activation domain. Virology263:1–14
    [Google Scholar]
  9. Jeffrey J. L., Pooma W., Petty I. T. D.. 1996; Genetic requirements for local and systemic movement of tomato golden mosaic virus in infected plants. Virology223:208–218
    [Google Scholar]
  10. Jones R. W., Jackson A. O., Morris T. J.. 1990; Defective-interfering RNAs and elevated temperatures inhibit replication of tomato bushy stunt virus in inoculated protoplasts. Virology176:539–545
    [Google Scholar]
  11. MacDowell S. W., Coutts R. H. A., Buck K. W.. 1986; Molecular characterisation of subgenomic single-stranded and double-stranded DNA forms isolated from plants infected with tomato golden mosaic virus. Nucleic Acids Research14:7967–7984
    [Google Scholar]
  12. Noris E., Jupin I., Accotto G. P., Gronenborn B.. 1996; DNA-binding activity of the C2 protein of tomato yellow leaf curl geminivirus. Virology217:607–612
    [Google Scholar]
  13. Orozco B. M., Gladfelter H. J., Settlage S. B., Eagle P. A., Gentry R. N., Hanley-Bowdoin L.. 1998; Multiple cis elements contribute to geminivirus origin function. Virology242:346–356
    [Google Scholar]
  14. Petty I. T. D., Coutts R. H. A., Buck K. W.. 1988; Transcriptional mapping of the coat protein gene of tomato golden mosaic virus. Journal of General Virology69:1359–1365
    [Google Scholar]
  15. Petty I. T. D., Miller C. G., Meade-Hash T. J., Schaffer R. L.. 1995; Complementable and noncomplementable host adaptation defects in bipartite geminiviruses. Virology212:263–267
    [Google Scholar]
  16. Pooma W., Gillette W. K., Jeffrey J. L., Petty I. T. D.. 1996; Host and viral factors determine the dispensability of coat protein for bipartite geminivirus systemic movement. Virology218:264–268
    [Google Scholar]
  17. Rogers S. G., Bisaro D. M., Horsch R. B., Fraley R. T., Hoffman N. L., Brand L., Elmer J. S., Lloyd A. M.. 1986; Tomato golden mosaic virus A component DNA replicates autonomously in transgenic plants. Cell45:593–600
    [Google Scholar]
  18. Ruiz-Medrano R., Guevara-González R. G., Argüello-Astorga G. R., Monsalve-Fonnegra Z., Herrera-Estrella L. R., Rivera-Bustamante R. F.. 1999; Identification of a sequence element involved in AC2-mediated transactivation of the pepper huasteco virus coat protein gene. Virology253:162–169
    [Google Scholar]
  19. Saunders K., Stanley J.. 1995; Complementation of African cassava mosaic virus AC2 gene function in a mixed bipartite geminivirus infection. Journal of General Virology76:2287–2292
    [Google Scholar]
  20. Schaffer R. L., Miller C. G., Petty I. T. D.. 1995; Virus and host-specific adaptations in the BL1 and BR1 genes of bipartite geminiviruses. Virology214:330–338
    [Google Scholar]
  21. Sung Y. K., Coutts R. H. A.. 1995; Pseudorecombination and complementation between potato yellow mosaic geminivirus and tomato golden mosaic geminivirus. Journal of General Virology76:2809–2815
    [Google Scholar]
  22. Sung Y. K., Coutts R. H. A.. 1996; Potato yellow mosaic geminivirus AC2 protein is a sequence non-specific DNA binding protein. FEBS Letters383:51–54
    [Google Scholar]
  23. Sunter G., Bisaro D. M.. 1989; Transcription map of the B genome component of tomato golden mosaic virus and comparison with A component transcripts. Virology173:647–655
    [Google Scholar]
  24. Sunter G., Bisaro D. M.. 1992; Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell4:1321–1331
    [Google Scholar]
  25. Sunter G., Bisaro D. M.. 1997; Regulation of a geminivirus coat protein promoter by AL2 protein (TrAP): evidence for activation and derepression mechanisms. Virology232:269–280
    [Google Scholar]
  26. Sunter G., Stenger D. C., Bisaro D. M.. 1994; Heterologous complementation by geminivirus AL2 and AL3 genes. Virology203:203–210
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-3-667
Loading
/content/journal/jgv/10.1099/0022-1317-82-3-667
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error