Innate resistance to flavivirus infection in mice controlled by is nitric oxide-independent Free

Abstract

Innate resistance to flaviviruses in mice is active in the brain where it restricts virus replication. This resistance is controlled by a single genetic locus, , located on mouse chromosome 5 near the locus encoding the neuronal form of nitric oxide synthase (). Since nitric oxide (NO) has been implicated in antiviral activity, its involvement in natural resistance to flaviviruses has been hypothesized. Here we present data on NO production before and during flavivirus infection in both brain tissue and peritoneal macrophages from two flavivirus-resistant ( ) and one congenic susceptible ( ) mouse strains. This study provides evidence that NO is not involved in the expression of flavivirus resistance controlled by since: () there is no difference in brain tissue NO levels between susceptible and resistant mice, and () lipopolysaccharide-induced NO does not abrogate the difference in flavivirus replication in peritoneal macrophages from susceptible and resistant mice.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-3-603
2001-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/3/0820603a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-3-603&mimeType=html&fmt=ahah

References

  1. Andrews D. M., Matthews V. B., Sammels L. M., Carrello A. C., McMinn P. C. 1999; The severity of Murray Valley encephalitis in mice is linked to neutrophil infiltration and inducible nitric oxide synthase activity in the central nervous system. Journal of Virology 73:8781–8790
    [Google Scholar]
  2. Bagetta G., Corasaniti M. T., Costa N., Berliocchi L., Finazzi-Agro A., Nistico G. 1997; The human immunodeficiency virus type 1 (HIV-1) glycoprotein gp120 reduces the expression of neuronal nitric oxide synthase in the hippocampus but not in the cerebral cortex and medial septal nucleus of rat. Neuroscience Letters 224:75–78
    [Google Scholar]
  3. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. 1991; Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351:714–718
    [Google Scholar]
  4. Brinton M. A. 1983; Analysis of extracellular West Nile virus particles produced by cell cultures from genetically resistant and susceptible mice indicates enhanced amplification of defective interfering particles by resistant cultures. Journal of Virology 46:860–870
    [Google Scholar]
  5. Flaherty L. 1981; Congenic strains. In History, Genetics and Wild Mice pp 215–221 Edited by Foster H. L., Small J. D., Fox J. G. New York: Academic Press;
    [Google Scholar]
  6. Gao J. J., Filla M. B., Fultz M. J., Vogel S. N., Russell S. W., Murphy W. J. 1998; Antocrine/paracroine IFN-αβ mediates the lipopolysaccharide-induced activation of transcription factor Stat1 α/β in mouse macrophages: pivotal role of Stat1 α/β in induction of the inducible nitric oxide synthase gene. Journal of Immunology 161:4803–4810
    [Google Scholar]
  7. Gerling I. C., Karlsen A. E., Chapman H. D., Andersen H. U., Boel E., Cunnigham J. M., Nerup J., Leiter E. H. 1994; The inducible nitric oxide synthase gene, Nos2, maps to mouse chromosome 11. Mammalian Genome 5:318–320
    [Google Scholar]
  8. Goodman G. T., Koprowski H. 1962; Macrophages as a cellular expression of inherited natural resistance. Proceedings of the National Academy of Sciences, USA 48:160–165
    [Google Scholar]
  9. Green M. C. 1989; Catalog of mutant genes and polymorphic loci. In Genetic Variants and Strains of the Laboratory Mouse . pp 12–403 Edited by Green M. C. Stuttgart: Gustav Fischer;
  10. Gregg A. R., Lee C. G. L., Herman G. E., O’Brien W. E. 1995; Endothelial nitric oxide synthase (Nos3) maps to the proximal region of mouse chromosome 5. Mammalian Genome 6:152
    [Google Scholar]
  11. Groschel D., Koprowski H. 1965; Development of a virus-resistant inbred mouse strain for the study of innate resistance to arbo B viruses. Archiv für die gesamte Virusforschung 17:379–391
    [Google Scholar]
  12. Grzybicki D. M., Kwack K. B., Perlman S., Murphy S. P. 1997; Nitric oxide synthase type II expression by different cell types in MHV-JHM encephalitis suggests distinct roles for nitric oxide in acute versus persistent virus infection. Journal of Neuroimmunology 73:15–27
    [Google Scholar]
  13. Han J., Lee J.-D., Bibbs L., Ulevitch R. J. 1994; A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808–811
    [Google Scholar]
  14. Hanson B., Koprowski H., Baron S., Buckler C. E. 1969; Interferon-mediated natural resistance of mice to arboB virus infection. Microbios 1B:51–68
    [Google Scholar]
  15. Karupiah T. R., Xie Q.-W., Buller R. M. L., Nathan C., Duarte C., MacMicking J. D. 1993; Inhibition of viral replication by interferon-γ-induced nitric oxide synthase. Science 261:1445–1448
    [Google Scholar]
  16. Kreil T. R., Eibl M. M. 1995; Viral infection of macrophages profoundly alters requirements for induction of nitric oxide synthesis. Virology 212:174–178
    [Google Scholar]
  17. Lee C. G. L., Gregg A. R., O’Brien W. E. 1995; Localisation of the neuronal form of nitric oxide synthase to mouse chromosome 5. Mammalian Genome 6:56–57
    [Google Scholar]
  18. Lin Y. L., Huang Y. L., Ma S. H., Yeh C. T., Chiou S. Y., Chen L. K., Liao C. L. 1997; Inhibition of Japanese encephalitis virus infection by nitric oxide: antiviral effect of nitric oxide on RNA virus replication. Journal of Virology 71:5227–5235
    [Google Scholar]
  19. Lowenstein C. J., Glatt C. S., Bredt D. S., Snyder S. H. 1992; Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proceedings of the National Academy of Sciences, USA 89:6711–6715
    [Google Scholar]
  20. MacMicking J., Xie Q.-W., Nathan C. 1997; Nitric oxide and macrophage function. Annual Review of Immunology 15:323–350
    [Google Scholar]
  21. Nathan C. 1992; Nitric oxide as a secretory product of mammalian cells. FASEB Journal 6:3051–3064
    [Google Scholar]
  22. Reiss C. S., Komatsu T. 1998; Does nitric oxide play a critical role in viral infections?. Journal of Virology 72:4547–4551
    [Google Scholar]
  23. Sabin A. B. 1952; Genetic, hormonal and age factors in natural resistance to certain viruses. Annals of the New York Academy of Sciences 54:936–944
    [Google Scholar]
  24. Sangster M. Y., Heliams D. B., Mackenzie J. S., Shellam G. R. 1993; Genetic studies of flavivirus resistance in inbred strains derived from wild mice: evidence for a new resistance allele at the flavivirus resistance locus ( Flv . Journal of Virology 67:340–347
    [Google Scholar]
  25. Sangster M. Y., Urosevic N., Mansfield J. P., Mackenzie J. S., Shellam G. R. 1994; Mapping the Flv locus controlling resistance to flaviviruses on mouse chromosome 5. Journal of Virology 68:448–452
    [Google Scholar]
  26. Sangster M. Y., Mackenzie J. S., Shellam G. R. 1998; Genetically determined resistance to flavivirus infection in wild Mus musculus domesticus and other taxonomic groups in the genus Mus . Archives of Virology 143:697–715
    [Google Scholar]
  27. Shellam G. R., Sangster M. Y., Urosevic N. 1998; Genetic control of host resistance to flavivirus infection in animals. Revue Scientifique et Technique, Office international des Epizooties 17:231–248
    [Google Scholar]
  28. Silvia O. J., Urosevic N. 1999; Variations in LPS responsiveness among different mouse substrains of C3H lineage and their congenic derivative sublines. Immunogenetics 50:354–357
    [Google Scholar]
  29. Silvia O. J., Shellam G. R., Price P., Allan J. E., Mackenzie J. S., Urosevic N. 1997; Expression of the flavivirus resistance phenotype in a cell culture system. Arbovirus Research in Australia 7:280–284
    [Google Scholar]
  30. Theiler M. 1930; Studies on the action of yellow fever virus in mice. Annals of Tropical Medicine and Parasitology 24:249–272
    [Google Scholar]
  31. Urosevic N., Mansfield J. P., Mackenzie J. S., Shellam G. R. 1995; Low resolution mapping around the flavivirus resistance locus ( Flv ) on mouse chromosome 5. Mammalian Genome 6:454–458
    [Google Scholar]
  32. Urosevic N., van Maanen M., Mansfield J. P., Mackenzie J. S., Shellam G. R. 1997; Molecular characterization of virus-specific RNA produced in the brains of flavivirus-susceptible and -resistant mice after challenge with Murray Valley encephalitis virus. Journal of General Virology 78:23–29
    [Google Scholar]
  33. Urosevic N., Silvia O. J., Sangster M. Y., Mansfield J. P., Hodgetts S. I., Shellam G. R. 1999; Development and characterization of new flavivirus-resistant mouse strains bearing Flv r-like and Flv mr alleles from wild or wild-derived mice. Journal of General Virology 80:897–906
    [Google Scholar]
  34. Xie Q.-W., Cho H. J., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Ding A., Troso T., Nathan C. 1992; Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256:225–228
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-3-603
Loading
/content/journal/jgv/10.1099/0022-1317-82-3-603
Loading

Data & Media loading...

Most cited Most Cited RSS feed