Fully functional, naturally occurring and C-terminally truncated variant human immunodeficiency virus (HIV) Vif does not bind to HIV Gag but influences intermediate filament structure Free

Abstract

A variant human immunodeficiency virus type 1 (HIV-1) gene, , which encodes a protein lacking 19 amino acids at the C terminus but which is fully functional in supporting HIV replication in non-permissive cells has been described previously. By employing newly generated anti-VifA45 serum, further properties of VifA45 and its full-length counterpart, VifA45open, in comparison to Vif from HIV strain BH10 are reported in permissive HeLa and COS-7 cells. The results obtained using confocal microscopic localization studies and binding assays do not support a requirement for the direct interaction of HIV Gag with Vif. Furthermore and in contrast to previous conclusions, detergent solubility analyses do not demonstrate a role for the C terminus of Vif in mediating localization to the fraction containing cellular membrane proteins. Localization of Vif from HIV strain BH10 to perinuclear aggregates in a small fraction (about 10%) of transfected HeLa cells has been previously reported. The intermediate filament protein vimentin colocalizes to these structures. In contrast, VifA45 and VifA45open form perinuclear aggregates in nearly all transfected HeLa cells; vimentin as well as the cytoskeletal-bridging protein plectin, but not the microtubular protein tubulin, become relocalized to these structures. Interestingly, in COS-7 cells, all of the functional Vif proteins tested (Vif from strain BH10, VifA45 and VifA45open) predominantly localize in the cytoplasm but still induce dramatic aggregation of vimentin and plectin, i.e. in these cells the respective Vif proteins are influencing intermediate filament structure in the absence of colocalization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-3-561
2001-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/3/0820561a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-3-561&mimeType=html&fmt=ahah

References

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. 1986; Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. Journal of Virology 59:284–291
    [Google Scholar]
  2. Akari H., Uchiyama T., Fukumori T., Iida S., Koyama A. H., Adachi A. 1999; Pseudotyping human immunodeficiency virus type 1 by vesicular stomatitis virus G protein does not reduce the cell-dependent requirement of Vif for optimal infectivity: functional difference between Vif and Nef. Journal of General Virology 80:2945–2949
    [Google Scholar]
  3. Borman A. M., Quillent C., Charneau P., Dauguet C., Clavel F. 1995; Human immunodeficiency virus type 1 Vif-mutant particles from restrictive cells: role of Vif in correct particle assembly and infectivity. Journal of Virology 69:2058–2067
    [Google Scholar]
  4. Bosch V., Pawlita M. 1990; Mutational analysis of the human immunodeficiency virus type 1 env gene product proteolytic cleavage site. Journal of Virology 64:2337–2344
    [Google Scholar]
  5. Bouyac M., Courcoul M., Bertoia G., Baudat Y., Gabuzda D., Blanc D., Chazal N., Boulanger P., Sire J., Vigne R., Spire B. 1997; Human immunodeficiency virus type 1 Vif protein binds to the Pr55Gag precursor. Journal of Virology 71:9358–9365
    [Google Scholar]
  6. Bukrinskaya A., Brichacek B., Mann A., Stevenson M. 1998; Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. Journal of Experimental Medicine 188:2113–2125
    [Google Scholar]
  7. Chatterji U., Grant C. K., Elder J. H. 2000; Feline immunodeficiency virus Vif localizes to the nucleus. Journal of Virology 74:2533–2540
    [Google Scholar]
  8. Chen M., Goorha R., Murti K. G. 1986; Interaction of frog virus 3 with the cytomatrix. IV. Phosphorylation of vimentin precedes the reorganization of intermediate filaments around the virus assembly sites. Journal of General Virology 67:915–922
    [Google Scholar]
  9. Chesebro B., Wehrly K., Nishio J., Perryman S. 1992; Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. Journal of Virology 66:6547–6554
    [Google Scholar]
  10. Courcoul M., Patience C., Rey F., Blanc D., Harmache A., Sire J., Vigne R., Spire B. 1995; Peripheral blood mononuclear cells produce normal amounts of defective Vif-human immunodeficiency virus type 1 particles which are restricted for the preretrotranscription steps. Journal of Virology 69:2068–2074
    [Google Scholar]
  11. Cullen B. R. 1998; HIV-1 auxiliary proteins: making connections in a dying cell. Cell 93:685–692
    [Google Scholar]
  12. Dettenhofer M., Yu X. F. 1999; Highly purified human immunodeficiency virus type 1 reveals a virtual absence of Vif in virions. Journal of Virology 73:1460–1467
    [Google Scholar]
  13. Doorbar J., Ely S., Sterling J., McLean C., Crawford L. 1991; Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature 352:824–827
    [Google Scholar]
  14. Fouchier R. A., Simon J. H., Jaffe A. B., Malim M. H. 1996; Human immunodeficiency virus type 1 Vif does not influence expression or virion incorporation of gag-, pol-, and env-encoded proteins. Journal of Virology 70:8263–8269
    [Google Scholar]
  15. Goncalves J., Jallepalli P., Gabuzda D. H. 1994; Subcellular localization of the Vif protein of human immunodeficiency virus type 1. Journal of Virology 68:704–712
    [Google Scholar]
  16. Goncalves J., Shi B., Yang X., Gabuzda D. 1995; Biological activity of human immunodeficiency virus type 1 Vif requires membrane targeting by C-terminal basic domains. Journal of Virology 69:7196–7204
    [Google Scholar]
  17. Herrmann H., Aebi U. 2000; Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Current Opinion in Cellular Biology 12:79–90
    [Google Scholar]
  18. Herrmann H., Eckelt A., Brettel M., Grund C., Franke W. W. 1993; Temperature-sensitive intermediate filament assembly. Alternative structures of Xenopus laevis vimentin in vitro and in vivo . Journal of Molecular Biology 234:99–113
    [Google Scholar]
  19. Hoglund S., Ohagen A., Lawrence K., Gabuzda D. 1994; Role of Vif during packing of the core of HIV-1. Virology 201:349–355
    [Google Scholar]
  20. Karczewski M. K., Strebel K. 1996; Cytoskeleton association and virion incorporation of the human immunodeficiency virus type 1 Vif protein. Journal of Virology 70:494–507
    [Google Scholar]
  21. Kotler M., Simm M., Zhao Y. S., Sova P., Chao W., Ohnona S. F., Roller R., Krachmarov C., Potash M. J., Volsky D. J. 1997; Human immunodeficiency virus type 1 (HIV-1) protein Vif inhibits the activity of HIV-1 protease in bacteria and in vitro . Journal of Virology 71:5774–5781
    [Google Scholar]
  22. Madani N., Kabat D. 1998; An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. Journal of Virology 72:10251–10255
    [Google Scholar]
  23. Mergener K., Facke M., Welker R., Brinkmann V., Gelderblom H. R., Krausslich H. G. 1992; Analysis of HIV particle formation using transient expression of subviral constructs in mammalian cells. Virology 186:25–39
    [Google Scholar]
  24. Nedellec P., Vicart P., Laurent-Winter C., Martinat C., Prevost M. C., Brahic M. 1998; Interaction of Theiler’s virus with intermediate filaments of infected cells. Journal of Virology 72:9553–9560
    [Google Scholar]
  25. Ochsenbauer C., Bosch V., Oelze I., Wieland U. 1996; Unimpaired function of a naturally occurring C-terminally truncated vif gene product of human immunodeficiency virus type 1. Journal of General Virology 77:1389–1395
    [Google Scholar]
  26. Ochsenbauer C., Wilk T., Bosch V. 1997; Analysis of vif -defective human immunodeficiency virus type 1 (HIV-1) virions synthesized in ‘non-permissive’ T lymphoid cells stably infected with selectable HIV-1. Journal of General Virology 78:627–635
    [Google Scholar]
  27. Ott D. E., Coren L. V., Kane B. P., Busch L. K., Johnson D. G., Sowder R. C.II., Chertova E. N., Arthur L. O., Henderson L. E. 1996; Cytoskeletal proteins inside human immunodeficiency virus type 1 virions. Journal of Virology 70:7734–7743
    [Google Scholar]
  28. Pfeiffer T., Zentgraf H., Freyaldenhoven B., Bosch V. 1997; Transfer of endoplasmic reticulum and Golgi retention signals to human immunodeficiency virus type 1 gp160 inhibits intracellular transport and proteolytic processing of viral glycoprotein but does not influence the cellular site of virus particle budding. Journal of General Virology 78:1745–1753
    [Google Scholar]
  29. Schroder R., Warlo I., Herrmann H., van der Ven P. F., Klasen C., Blumcke I., Mundegar R. R., Furst D. O., Goebel H. H., Magin T. M. 1999; Immunogold EM reveals a close association of plectin and the desmin cytoskeleton in human skeletal muscle. European Journal of Cellular Biology 78:288–295
    [Google Scholar]
  30. Seroude V., Audoly G., Gluschankof P., Suzan M. 2001; Tryptophan 95, an amino acid residue of the caprine arthritis–encephalitis virus Vif protein which is essential for virus replication. Virology (in press
    [Google Scholar]
  31. Simm M., Shahabuddin M., Chao W., Allan J. S., Volsky D. J. 1995; Aberrant Gag protein composition of a human immunodeficiency virus type 1 vif mutant produced in primary lymphocytes. Journal of Virology 69:4582–4585
    [Google Scholar]
  32. Simon J. H., Malim M. H. 1996; The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes. Journal of Virology 70:5297–5305
    [Google Scholar]
  33. Simon J. H., Fouchier R. A., Southerling T. E., Guerra C. B., Grant C. K., Malim M. H. 1997; The Vif and Gag proteins of human immunodeficiency virus type 1 colocalize in infected human T cells. Journal of Virology 71:5259–5267
    [Google Scholar]
  34. Simon J. H., Gaddis N. C., Fouchier R. A., Malim M. H. 1998a; Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nature Medicine 4:1397–1400
    [Google Scholar]
  35. Simon J. H., Miller D. L., Fouchier R. A., Soares M. A., Peden K. W., Malim M. H. 1998b; The regulation of primate immunodeficiency virus infectivity by Vif is cell species restricted: a role for Vif in determining virus host range and cross-species transmission. EMBO Journal 17:1259–1267
    [Google Scholar]
  36. Simon J. H., Carpenter E. A., Fouchier R. A., Malim M. H. 1999; Vif and the p55(Gag) polyprotein of human immunodeficiency virus type 1 are present in colocalizing membrane-free cytoplasmic complexes. Journal of Virology 73:2667–2674
    [Google Scholar]
  37. Sova P., Volsky D. J. 1993; Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1. Journal of Virology 67:6322–6326
    [Google Scholar]
  38. Spire B., Hirsch I., Neuveut C., Sire J., Chermann J. C. 1990; The env gene variability is not directly related to the high cytopathogenicity of an HIV-1 variant. Virology 177:756–758
    [Google Scholar]
  39. Stegh A. H., Herrmann H., Lampel S., Weisenberger D., Andra K., Seper M., Wiche G., Krammer P. H., Peter M. E. 2000; Identification of the cytolinker plectin as a major early in vivo substrate for caspase-8 during CD95- and tumor necrosis factor receptor-mediated apoptosis. Molecular and Cellular Biology 20:5665–5679
    [Google Scholar]
  40. Strebel K., Daugherty D., Clouse K., Cohen D., Folks T., Martin M. A. 1987; The HIV ‘A’ (sor) gene product is essential for virus infectivity. Nature 328:728–730
    [Google Scholar]
  41. Subbramanian R. A., Cohen E. A. 1994; Molecular biology of the human immunodeficiency virus accessory proteins. Journal of Virology 68:6831–6835
    [Google Scholar]
  42. von Schwedler U., Song J., Aiken C., Trono D. 1993; Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. Journal of Virology 67:4945–4955
    [Google Scholar]
  43. White E., Cipriani R. 1990; Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19-kilodalton protein. Molecular and Cellular Biology 10:120–130
    [Google Scholar]
  44. Wieland U., Kratschmann H., Kehm R., Kuhn J. E., Naher H., Kramer M. D., Braun R. W. 1991; Antigenic domains of the HIV-1 vif protein as recognized by human sera and murine monoclonal antibodies. AIDS Research and Human Retroviruses 7:861–867
    [Google Scholar]
  45. Wieland U., Hartmann J., Suhr H., Salzberger B., Eggers H. J., Kuhn J. E. 1994; In vivo genetic variability of the HIV-1 vif gene. Virology 203:43–51
    [Google Scholar]
  46. Willey R. L., Maldarelli F., Martin M. A., Strebel K. 1992; Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. Journal of Virology 66:7193–7200
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-3-561
Loading
/content/journal/jgv/10.1099/0022-1317-82-3-561
Loading

Data & Media loading...

Most cited Most Cited RSS feed