1887

Abstract

Human immunodeficiency virus type 1 (HIV-1) is classified into subtypes on the basis of phylogenetic analysis of sequence differences. Inter- and intra-subtype polymorphism extends throughout the genome, including the long terminal repeat (LTR). In this study, the importance of the upstream stimulating factor (USF)-binding site (E-box) in the core-negative regulatory element (NRE) of the LTR of HIV-1 subtypes A, B, C, D, E and G was investigated. , USF was found to repress transcription directed from representative HIV-1 LTR sequences of all the subtypes tested in an epithelial cell line, yet activate the same transcription in a T-cell line. Mutation of the core-NRE USF site of the representative subtype B LTR did not affect the cell-specific, subtype-independent, dual role of USF. binding assays showed that recombinant USF interacts with the core-NRE from subtypes B and C, but not A, D, E or G. Thus, USF affects LTR-directed transcription in a cell-specific manner, independently of both the HIV-1 subtype from which the LTR was derived and the core-NRE USF site sequences.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-3-547
2001-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/3/0820547a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-3-547&mimeType=html&fmt=ahah

References

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. 1986; Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. Journal of Virology 59:284–291
    [Google Scholar]
  2. Bell B., Sadowski I. 1996; Ras-responsiveness of the HIV-1 LTR requires RBF-1 and RBF-2 binding sites. Oncogene 13:2687–2697
    [Google Scholar]
  3. Bjorndal A., Sonnerborg A., Tsherning C., Fenyo E. M. 1999; Phenotypic characteristics of human immunodeficiency virus type 1 subtype C isolates of Ethiopian AIDS patients. AIDS Research and Human Retroviruses 15:647–653
    [Google Scholar]
  4. Blackard J. T., Renjifo B. R., Mwakagile D., Montano M. A., Fawzi W. W., Essex M. 1999; Transmission of human immunodeficiency type 1 viruses with intersubtype recombinant long terminal repeat sequences. Virology 254:220–225
    [Google Scholar]
  5. Burke D. S. 1996; Joseph-Alexandre Auzias-Turenne, Louis Pasteur, and early concepts of virulence, attenuation, and vaccination. Perspectives in Biology and Medicine 39:171–186
    [Google Scholar]
  6. Carthew R. W., Chodosh L. A., Sharp P. A. 1985; An RNA polymerase II transcription factor binds to an upstream element in the adenovirus major late promoter. Cell 43:439–448
    [Google Scholar]
  7. Chiang C. M., Roeder R. G. 1993; Expression and purification of general transcription factors by FLAG epitope-tagging and peptide elution. Peptide Research 6:62–64
    [Google Scholar]
  8. Chiang C. M., Roeder R. G. 1995; Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science 267:531–536
    [Google Scholar]
  9. Chodosh L. A., Carthew R. W., Sharp P. A. 1986; A single polypeptide possesses the binding and transcription activities of the adenovirus major late transcription factor. Molecular and Cellular Biology 6:4723–4733
    [Google Scholar]
  10. di Fagagna F. D., Marzio G., Gutierrez M. I., Kang L. Y., Falaschi A., Giacca M. 1995; Molecular and functional interactions of transcription factor USF with the long terminal repeat of human immunodeficiency virus type 1. Journal of Virology 69:2765–2775
    [Google Scholar]
  11. Dignam J. D., Lebovitz R. M., Roeder R. G. 1983; Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Research 11:1475–1489
    [Google Scholar]
  12. Du H., Roy A. L., Roeder R. G. 1993; Human transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ML promoters. EMBO Journal 12:501–511
    [Google Scholar]
  13. Estable M. C., Bell B., Merzouki A., Montaner J. S., O’Shaughnessy M. V., Sadowski I. J. 1996; Human immunodeficiency virus type 1 long terminal repeat variants from 42 patients representing all stages of infection display a wide range of sequence polymorphism and transcription activity. Journal of Virology 70:4053–4062
    [Google Scholar]
  14. Estable M. C., Bell B., Hirst M., Sadowski I. 1998a; Naturally occurring human immunodeficiency virus type 1 long terminal repeats have a frequently observed duplication that binds RBF-2 and represses transcription. Journal of Virology 72:6465–6474
    [Google Scholar]
  15. Estable M. C., Merzouki A., Arella M., Sadowski I. J. 1998b; Distinct clustering of HIV type 1 sequences derived from injection versus noninjection drug users in Vancouver, Canada. AIDS Research and Human Retroviruses 14:917–919
    [Google Scholar]
  16. Estable M. C., Hirst M., Bell B., O’Shaughnessy M. V., Sadowski I. 1999; Purification of RBF-2, a transcription factor with specificity for the most conserved cis-element of naturally occurring HIV-1 LTRs. Journal of Biomedical Science 6:320–332
    [Google Scholar]
  17. Gao F., Robertson D. L., Morrison S. G., Hui H., Craig S., Decker J., Fultz P. N., Girard M., Shaw G. M., Hahn B. H., Sharp P. M. 1996; The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin. Journal of Virology 70:7013–7029
    [Google Scholar]
  18. Garcia J. A., Wu F. K., Mitsuyasu R., Gaynor R. B. 1987; Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus. EMBO Journal 6:3761–3770
    [Google Scholar]
  19. Gaynor R. 1992; Cellular transcription factors involved in the regulation of HIV-1 gene expression. AIDS 6:347–363
    [Google Scholar]
  20. Giacca M., Gutierrez M. I., Menzo S., Di Fagagna F. D., Falaschi A. 1992; A human binding site for transcription factor USF/MLTF mimics the negative regulatory element of human immunodeficiency virus type 1. Virology 186:133–147
    [Google Scholar]
  21. Gregor P. D., Sawadogo M., Roeder R. G. 1990; The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer. Genes & Development 4:1730–1740
    [Google Scholar]
  22. Holzmeister J., Ludewig B., Pauli G., Simon D. 1993; Sequence specific binding of the transcription factor c-Ets1 to the human immunodeficiency virus type I long terminal repeat. Biochemical and Biophysical Research Communications 197:1229–1233
    [Google Scholar]
  23. Janssens W., Buve A., Nkengasong J. N. 1997; The puzzle of HIV-1 subtypes in Africa. AIDS 11:705–712
    [Google Scholar]
  24. Jeeninga R. E., Hoogenkamp M., Armand-Ugon M., de Baar M., Verhoef K., Berkhout B. 2000; Functional differences between the LTR transcriptional promoters of HIV-1 subtypes A through G. Journal of Virology 74:3740–3751
    [Google Scholar]
  25. Jones K. A., Peterlin B. M. 1994; Control of RNA initiation and elongation at the HIV-1 promoter. Annual Review of Biochemistry 63:717–743
    [Google Scholar]
  26. Kanki P. J., Hamel D. J., Sankale J. L., Hsieh C., Thior I., Barin F., Woodcock S. A., Gueye-Ndiaye A., Zhang E., Montano M., Siby T., Marlink R., NDoye I., Essex M. E., MBoup S. 1999; Human immunodeficiency virus type 1 subtypes differ in disease progression. Journal of Infectious Diseases 179:68–73
    [Google Scholar]
  27. Karn J. 1999; Tackling Tat. Journal of Molecular Biology 293:235–254
    [Google Scholar]
  28. Kirschbaum B. J., Pognonec P., Roeder R. G. 1992; Definition of the transcriptional activation domain of recombinant 43-kilodalton USF. Molecular and Cellular Biology 12:5094–5101
    [Google Scholar]
  29. Lu Y., Stenzel M., Sodroski J. G., Haseltine W. A. 1989; Effects of long terminal repeat mutations on human immunodeficiency virus type 1 replication. Journal of Virology 63:4115–4119
    [Google Scholar]
  30. Lu Y. C., Touzjian N., Stenzel M., Dorfman T., Sodroski J. G., Haseltine W. A. 1990; Identification of cis -acting repressive sequences within the negative regulatory element of human immunodeficiency virus type 1. Journal of Virology 64:5226–5229
    [Google Scholar]
  31. Maekawa T., Sudo T., Kurimoto M., Ishii S. 1991; USF-related transcription factor, HIV-TF1, stimulates transcription of human immunodeficiency virus-1. Nucleic Acids Research 19:4689–4694
    [Google Scholar]
  32. Meisterernst M., Roy A. L., Lieu H. M., Roeder R. G. 1991; Activation of class II gene transcription by regulatory factors is potentiated by a novel activity. Cell 66:981–993
    [Google Scholar]
  33. Miyamoto N. G., Moncollin V., Egly J. M., Chambon P. 1985; Specific interaction between a transcription factor and the upstream element of the adenovirus-2 major late promoter. EMBO Journal 4:3563–3570
    [Google Scholar]
  34. Montano M. A., Novitsky V. A., Blackard J. T., Cho N. L., Katzenstein D. A., Essex M. 1997; Divergent transcriptional regulation among expanding human immunodeficiency virus type 1 subtypes. Journal of Virology 71:8657–8665
    [Google Scholar]
  35. Montano M. A., Nixon C. P., Essex M. 1998; Dysregulation through the NF-kappaB enhancer and TATA box of the human immunodeficiency virus type 1 subtype E promoter. Journal of Virology 72:8446–8442
    [Google Scholar]
  36. Moriuchi M., Moriuchi H., Margolis D. M., Fauci A. S. 1999; USF/c-Myc enhances, while Yin-Yang 1 suppresses, the promoter activity of CXCR4, a coreceptor for HIV-1 entry. Journal of Immunology 162:5986–5992
    [Google Scholar]
  37. Moses A. V., Ibanez C., Gaynor R., Ghazal P., Nelson J. A. 1994; Differential role of long terminal repeat control elements for the regulation of basal and Tat-mediated transcription of the human immunodeficiency virus in stimulated and unstimulated primary human macrophages. Journal of Virology 68:298–307
    [Google Scholar]
  38. Myers G., Korber B., Wain-Hobson S., Smith R., Pavlakis G. N. 1995; A compilation and analysis of nucleic acid and amino acid sequences. In Human Retroviruses and AIDS Los Alamos, New Mexico: Los Alamos National Laboratory;
    [Google Scholar]
  39. Naghavi M. H., Salminen M. O., Sonnerborg A., Vahlne A. 1999a; DNA sequence of the long terminal repeat of human immunodeficiency virus type 1 subtype A through G. AIDS Research and Human Retroviruses 15:485–488
    [Google Scholar]
  40. Naghavi M. H., Schwartz S., Sonnerborg A., Vahlne A. 1999b; Long terminal repeat promoter/enhancer activity of different subtypes of HIV type 1. AIDS Research and Human Retroviruses 15:1293–1303
    [Google Scholar]
  41. Nourbakhsh M., Hoffmann K., Hauser H. 1993; Interferon-beta promoters contain a DNA element that acts as a position-independent silencer on the NF-kappaB site. EMBO Journal 12:451–459
    [Google Scholar]
  42. Ramirez-Solis R., Resendez-Perez D., Alvidrez-Quihui L. E., Rincon-Limas D. E., Varela-Martinez R., Martinez-Rodriguez H. G., Barrera-Saldana H. A. 1990; New vectors for the efficient expression of mammalian genes in cultured cells. Gene 87:291–294
    [Google Scholar]
  43. Robertson D. L., Hahn B. H., Sharp P. M. 1995a; Recombination in AIDS viruses. Journal of Molecular Evolution 40:249–259
    [Google Scholar]
  44. Robertson D. L., Sharp P. M., McCutchan F. E., Hahn B. H. 1995b; Recombination in HIV-1. Nature 374:124–126
    [Google Scholar]
  45. Rosen C. A., Sodroski J. G., Haseltine W. A. 1985; The location of cis -acting regulatory sequences in the human T-cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41:813–823
    [Google Scholar]
  46. Rousseau C., Abrams E., Lee M., Urbano R., King M. C. 1997; Long terminal repeat and nef gene variants of human immunodeficiency virus type 1 in perinatally infected long-term survivors and rapid progressors. AIDS Research and Human Retroviruses 13:1611–1623
    [Google Scholar]
  47. Roy A. L., Meisterernst M., Pognonec P., Roeder R. G. 1991; Cooperative interaction of an initiator-binding transcription initiation factor and the helix-loop-helix activator USF. Nature 354:245–248
    [Google Scholar]
  48. Roy A. L., Du H., Gregor P. D., Novina C. D., Martinez E., Roeder R. G. 1997; Cloning of an inr- and E-box-binding protein, TFII-I, that interacts physically and functionally with USF1. EMBO Journal 16:7091–7104
    [Google Scholar]
  49. Sawadogo M., Roeder R. G. 1985a; DNA-binding specificity of USF, a human gene-specific transcription factor required for maximum expression of the major late promoter of adenovirus. In DNA Tumor Viruses: Control of Gene Expression and Replication (Cancer Cells 4) pp 147–154 Edited by Botchan M., Grodzicker T., Sharp P. A. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  50. Sawadogo M., Roeder R. G. 1985b; Factors involved in specific transcription by human RNA polymerase II: analysis by a rapid and quantitative in vitro assay. Proceedings of the National Academy of Sciences, USA 82:4394–4398
    [Google Scholar]
  51. Sawadogo M., Van Dyke M. W., Gregor P. D., Roeder R. G. 1988; Multiple forms of the human gene-specific transcription factor USF. I. Complete purification and identification of USF from HeLa cell nuclei. Journal of Biological Chemistry 263:11985–11993
    [Google Scholar]
  52. Sieweke M. H., Tekotte H., Jarosch U., Graf T. 1998; Cooperative interaction of ets-1 with USF-1 required for HIV-1 enhancer activity in T-cells. EMBO Journal 17:1728–1739
    [Google Scholar]
  53. Simm M., Chao W., Pekarskaya O., Sova P., Gupta P., Balachandran R., Volsky D. J. 1996; Genetic variability and function of the long terminal repeat from syncytium-inducing and non-syncytium-inducing human immunodeficiency virus type 1. AIDS Research and Human Retroviruses 12:801–809
    [Google Scholar]
  54. Smith M. R., Greene W. C. 1989; The same 50 kDa cellular protein binds to the negative regulatory elements of the interleukin 2 receptor alpha-chain gene and the human immunodeficiency virus type 1 long terminal repeat. Proceedings of the National Academy of Sciences, USA 86:8526–8530
    [Google Scholar]
  55. Sokolowski M., Tan W., Jellne M., Schwartz S. 1998; mRNA instability elements in the human papillomavirus type 16 L2 coding region. Journal of Virology 72:1504–1515
    [Google Scholar]
  56. Soto-Ramirez L. E., Renjifo B., McLane M. F., Marlink R., O’Hara C., Sutthent R., Wasi C., Vithayasai P., Vithayasai V., Apichartpiyakul C., Auewarakul P., Pena Cruz V., Chui D. S., Osathanondh R., Mayer K., Lee T. H., Essex M. 1996; HIV-1 Langerhans’ cell tropism associated with heterosexual transmission of HIV. Science 271:1291–1293
    [Google Scholar]
  57. Tan W., Felber B. K., Zolotukhin A. S., Pavlakis G. N., Schwartz S. 1995; Efficient expression of the human papillomavirus type 16 L1 protein in epithelial cells by using Rev and the Rev-responsive element of human immunodeficiency virus or the cis -acting transactivation element of simian retrovirus type 1. Journal of Virology 69:5607–5620
    [Google Scholar]
  58. Tesmer V. M., Rajadhyaksha A., Babin J., Bina M. 1993; NF-IL6-mediated transcriptional activation of the long terminal repeat of the human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences, USA 90:7298–7302
    [Google Scholar]
  59. Triques K., Bourgeois A., Vidal N., Mpoudi-Ngole E., Mulanga-Kabeya C., Nzilambi N., Torimiro N., Saman E., Delaporte E., Peeters M. 2000; Near-full-length genome sequencing of divergent African HIV type 1 subtype F viruses leads to the identification of a new HIV type 1 subtype designated K. AIDS Research and Human Retroviruses 16:139–151
    [Google Scholar]
  60. Tscherning C., Alaeus A., Fredriksson R., Bjorndal A., Deng H., Littman D. R., Fenyo E. M., Albert J. 1998; Differences in chemokine coreceptor usage between genetic subtypes of HIV-1. Virology 241:181–188
    [Google Scholar]
  61. Verhoef K., Sanders R. W., Fontaine V., Kitajima S., Berkhout B. 1999; Evolution of the human immunodeficiency virus type 1 long terminal repeat promoter by conversion of an NF-kappaB enhancer element into a GABP binding site. Journal of Virology 73:1331–1340
    [Google Scholar]
  62. WHO 1998; Report on the global HIV/AIDS epidemic. WHO Report (June 1998)
    [Google Scholar]
  63. Zeichner S. L., Kim J. Y., Alwine J. C. 1991; Linker-scanning mutational analysis of the transcriptional activity of the human immunodeficiency virus type 1 long terminal repeat. Journal of Virology 65:2436–2444
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-3-547
Loading
/content/journal/jgv/10.1099/0022-1317-82-3-547
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error