1887

Abstract

Human immunodeficiency virus type 1 (HIV-1) is classified into subtypes on the basis of phylogenetic analysis of sequence differences. Inter- and intra-subtype polymorphism extends throughout the genome, including the long terminal repeat (LTR). In this study, the importance of the upstream stimulating factor (USF)-binding site (E-box) in the core-negative regulatory element (NRE) of the LTR of HIV-1 subtypes A, B, C, D, E and G was investigated. , USF was found to repress transcription directed from representative HIV-1 LTR sequences of all the subtypes tested in an epithelial cell line, yet activate the same transcription in a T-cell line. Mutation of the core-NRE USF site of the representative subtype B LTR did not affect the cell-specific, subtype-independent, dual role of USF. binding assays showed that recombinant USF interacts with the core-NRE from subtypes B and C, but not A, D, E or G. Thus, USF affects LTR-directed transcription in a cell-specific manner, independently of both the HIV-1 subtype from which the LTR was derived and the core-NRE USF site sequences.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-3-547
2001-03-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/3/0820547a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-3-547&mimeType=html&fmt=ahah

References

  1. Adachi, A., Gendelman, H. E., Koenig, S., Folks, T., Willey, R., Rabson, A. & Martin, M. A. ( 1986; ). Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. Journal of Virology 59, 284-291.
    [Google Scholar]
  2. Bell, B. & Sadowski, I. ( 1996; ). Ras-responsiveness of the HIV-1 LTR requires RBF-1 and RBF-2 binding sites. Oncogene 13, 2687-2697.
    [Google Scholar]
  3. Bjorndal, A., Sonnerborg, A., Tsherning, C. & Fenyo, E. M. ( 1999; ). Phenotypic characteristics of human immunodeficiency virus type 1 subtype C isolates of Ethiopian AIDS patients. AIDS Research and Human Retroviruses 15, 647-653.[CrossRef]
    [Google Scholar]
  4. Blackard, J. T., Renjifo, B. R., Mwakagile, D., Montano, M. A., Fawzi, W. W. & Essex, M. ( 1999; ). Transmission of human immunodeficiency type 1 viruses with intersubtype recombinant long terminal repeat sequences. Virology 254, 220-225.[CrossRef]
    [Google Scholar]
  5. Burke, D. S. ( 1996; ). Joseph-Alexandre Auzias-Turenne, Louis Pasteur, and early concepts of virulence, attenuation, and vaccination. Perspectives in Biology and Medicine 39, 171-186.[CrossRef]
    [Google Scholar]
  6. Carthew, R. W., Chodosh, L. A. & Sharp, P. A. ( 1985; ). An RNA polymerase II transcription factor binds to an upstream element in the adenovirus major late promoter. Cell 43, 439-448.[CrossRef]
    [Google Scholar]
  7. Chiang, C. M. & Roeder, R. G. ( 1993; ). Expression and purification of general transcription factors by FLAG epitope-tagging and peptide elution. Peptide Research 6, 62-64.
    [Google Scholar]
  8. Chiang, C. M. & Roeder, R. G. ( 1995; ). Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science 267, 531-536.[CrossRef]
    [Google Scholar]
  9. Chodosh, L. A., Carthew, R. W. & Sharp, P. A. ( 1986; ). A single polypeptide possesses the binding and transcription activities of the adenovirus major late transcription factor. Molecular and Cellular Biology 6, 4723-4733.
    [Google Scholar]
  10. di Fagagna, F. D., Marzio, G., Gutierrez, M. I., Kang, L. Y., Falaschi, A. & Giacca, M. ( 1995; ). Molecular and functional interactions of transcription factor USF with the long terminal repeat of human immunodeficiency virus type 1. Journal of Virology 69, 2765-2775.
    [Google Scholar]
  11. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. ( 1983; ). Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Research 11, 1475-1489.[CrossRef]
    [Google Scholar]
  12. Du, H., Roy, A. L. & Roeder, R. G. ( 1993; ). Human transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ML promoters. EMBO Journal 12, 501-511.
    [Google Scholar]
  13. Estable, M. C., Bell, B., Merzouki, A., Montaner, J. S., O’Shaughnessy, M. V. & Sadowski, I. J. ( 1996; ). Human immunodeficiency virus type 1 long terminal repeat variants from 42 patients representing all stages of infection display a wide range of sequence polymorphism and transcription activity. Journal of Virology 70, 4053-4062.
    [Google Scholar]
  14. Estable, M. C., Bell, B., Hirst, M. & Sadowski, I. ( 1998a; ). Naturally occurring human immunodeficiency virus type 1 long terminal repeats have a frequently observed duplication that binds RBF-2 and represses transcription. Journal of Virology 72, 6465-6474.
    [Google Scholar]
  15. Estable, M. C., Merzouki, A., Arella, M. & Sadowski, I. J. ( 1998b; ). Distinct clustering of HIV type 1 sequences derived from injection versus noninjection drug users in Vancouver, Canada. AIDS Research and Human Retroviruses 14, 917-919.[CrossRef]
    [Google Scholar]
  16. Estable, M. C., Hirst, M., Bell, B., O’Shaughnessy, M. V. & Sadowski, I. ( 1999; ). Purification of RBF-2, a transcription factor with specificity for the most conserved cis-element of naturally occurring HIV-1 LTRs. Journal of Biomedical Science 6, 320-332.
    [Google Scholar]
  17. Gao, F., Robertson, D. L., Morrison, S. G., Hui, H., Craig, S., Decker, J., Fultz, P. N., Girard, M., Shaw, G. M., Hahn, B. H. & Sharp, P. M. ( 1996; ). The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin. Journal of Virology 70, 7013-7029.
    [Google Scholar]
  18. Garcia, J. A., Wu, F. K., Mitsuyasu, R. & Gaynor, R. B. ( 1987; ). Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus. EMBO Journal 6, 3761-3770.
    [Google Scholar]
  19. Gaynor, R. ( 1992; ). Cellular transcription factors involved in the regulation of HIV-1 gene expression. AIDS 6, 347-363.[CrossRef]
    [Google Scholar]
  20. Giacca, M., Gutierrez, M. I., Menzo, S., Di Fagagna, F. D. & Falaschi, A. ( 1992; ). A human binding site for transcription factor USF/MLTF mimics the negative regulatory element of human immunodeficiency virus type 1. Virology 186, 133-147.[CrossRef]
    [Google Scholar]
  21. Gregor, P. D., Sawadogo, M. & Roeder, R. G. ( 1990; ). The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer. Genes & Development 4, 1730-1740.[CrossRef]
    [Google Scholar]
  22. Holzmeister, J., Ludewig, B., Pauli, G. & Simon, D. ( 1993; ). Sequence specific binding of the transcription factor c-Ets1 to the human immunodeficiency virus type I long terminal repeat. Biochemical and Biophysical Research Communications 197, 1229-1233.[CrossRef]
    [Google Scholar]
  23. Janssens, W., Buve, A. & Nkengasong, J. N. ( 1997; ). The puzzle of HIV-1 subtypes in Africa. AIDS 11, 705-712.[CrossRef]
    [Google Scholar]
  24. Jeeninga, R. E., Hoogenkamp, M., Armand-Ugon, M., de Baar, M., Verhoef, K. & Berkhout, B. ( 2000; ). Functional differences between the LTR transcriptional promoters of HIV-1 subtypes A through G. Journal of Virology 74, 3740-3751.[CrossRef]
    [Google Scholar]
  25. Jones, K. A. & Peterlin, B. M. ( 1994; ). Control of RNA initiation and elongation at the HIV-1 promoter. Annual Review of Biochemistry 63, 717-743.[CrossRef]
    [Google Scholar]
  26. Kanki, P. J., Hamel, D. J., Sankale, J. L., Hsieh, C., Thior, I., Barin, F., Woodcock, S. A., Gueye-Ndiaye, A., Zhang, E., Montano, M., Siby, T., Marlink, R., NDoye, I., Essex, M. E. & MBoup, S. ( 1999; ). Human immunodeficiency virus type 1 subtypes differ in disease progression. Journal of Infectious Diseases 179, 68-73.[CrossRef]
    [Google Scholar]
  27. Karn, J. ( 1999; ). Tackling Tat. Journal of Molecular Biology 293, 235-254.[CrossRef]
    [Google Scholar]
  28. Kirschbaum, B. J., Pognonec, P. & Roeder, R. G. ( 1992; ). Definition of the transcriptional activation domain of recombinant 43-kilodalton USF. Molecular and Cellular Biology 12, 5094-5101.
    [Google Scholar]
  29. Lu, Y., Stenzel, M., Sodroski, J. G. & Haseltine, W. A. ( 1989; ). Effects of long terminal repeat mutations on human immunodeficiency virus type 1 replication. Journal of Virology 63, 4115-4119.
    [Google Scholar]
  30. Lu, Y. C., Touzjian, N., Stenzel, M., Dorfman, T., Sodroski, J. G. & Haseltine, W. A. ( 1990; ). Identification of cis-acting repressive sequences within the negative regulatory element of human immunodeficiency virus type 1. Journal of Virology 64, 5226-5229.
    [Google Scholar]
  31. Maekawa, T., Sudo, T., Kurimoto, M. & Ishii, S. ( 1991; ). USF-related transcription factor, HIV-TF1, stimulates transcription of human immunodeficiency virus-1. Nucleic Acids Research 19, 4689-4694.[CrossRef]
    [Google Scholar]
  32. Meisterernst, M., Roy, A. L., Lieu, H. M. & Roeder, R. G. ( 1991; ). Activation of class II gene transcription by regulatory factors is potentiated by a novel activity. Cell 66, 981-993.[CrossRef]
    [Google Scholar]
  33. Miyamoto, N. G., Moncollin, V., Egly, J. M. & Chambon, P. ( 1985; ). Specific interaction between a transcription factor and the upstream element of the adenovirus-2 major late promoter. EMBO Journal 4, 3563-3570.
    [Google Scholar]
  34. Montano, M. A., Novitsky, V. A., Blackard, J. T., Cho, N. L., Katzenstein, D. A. & Essex, M. ( 1997; ). Divergent transcriptional regulation among expanding human immunodeficiency virus type 1 subtypes. Journal of Virology 71, 8657-8665.
    [Google Scholar]
  35. Montano, M. A., Nixon, C. P. & Essex, M. ( 1998; ). Dysregulation through the NF-kappaB enhancer and TATA box of the human immunodeficiency virus type 1 subtype E promoter. Journal of Virology 72, 8446-8442.
    [Google Scholar]
  36. Moriuchi, M., Moriuchi, H., Margolis, D. M. & Fauci, A. S. ( 1999; ). USF/c-Myc enhances, while Yin-Yang 1 suppresses, the promoter activity of CXCR4, a coreceptor for HIV-1 entry. Journal of Immunology 162, 5986-5992.
    [Google Scholar]
  37. Moses, A. V., Ibanez, C., Gaynor, R., Ghazal, P. & Nelson, J. A. ( 1994; ). Differential role of long terminal repeat control elements for the regulation of basal and Tat-mediated transcription of the human immunodeficiency virus in stimulated and unstimulated primary human macrophages. Journal of Virology 68, 298-307.
    [Google Scholar]
  38. Myers, G., Korber, B., Wain-Hobson, S., Smith, R. & Pavlakis, G. N. (1995). A compilation and analysis of nucleic acid and amino acid sequences. In Human Retroviruses and AIDS. Los Alamos, New Mexico: Los Alamos National Laboratory.
  39. Naghavi, M. H., Salminen, M. O., Sonnerborg, A. & Vahlne, A. ( 1999a; ). DNA sequence of the long terminal repeat of human immunodeficiency virus type 1 subtype A through G. AIDS Research and Human Retroviruses 15, 485-488.[CrossRef]
    [Google Scholar]
  40. Naghavi, M. H., Schwartz, S., Sonnerborg, A. & Vahlne, A. ( 1999b; ). Long terminal repeat promoter/enhancer activity of different subtypes of HIV type 1. AIDS Research and Human Retroviruses 15, 1293-1303.[CrossRef]
    [Google Scholar]
  41. Nourbakhsh, M., Hoffmann, K. & Hauser, H. ( 1993; ). Interferon-beta promoters contain a DNA element that acts as a position-independent silencer on the NF-kappaB site. EMBO Journal 12, 451-459.
    [Google Scholar]
  42. Ramirez-Solis, R., Resendez-Perez, D., Alvidrez-Quihui, L. E., Rincon-Limas, D. E., Varela-Martinez, R., Martinez-Rodriguez, H. G. & Barrera-Saldana, H. A. ( 1990; ). New vectors for the efficient expression of mammalian genes in cultured cells. Gene 87, 291-294.[CrossRef]
    [Google Scholar]
  43. Robertson, D. L., Hahn, B. H. & Sharp, P. M. ( 1995a; ). Recombination in AIDS viruses. Journal of Molecular Evolution 40, 249-259.[CrossRef]
    [Google Scholar]
  44. Robertson, D. L., Sharp, P. M., McCutchan, F. E. & Hahn, B. H. ( 1995b; ). Recombination in HIV-1. Nature 374, 124-126.
    [Google Scholar]
  45. Rosen, C. A., Sodroski, J. G. & Haseltine, W. A. ( 1985; ). The location of cis-acting regulatory sequences in the human T-cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41, 813-823.[CrossRef]
    [Google Scholar]
  46. Rousseau, C., Abrams, E., Lee, M., Urbano, R. & King, M. C. ( 1997; ). Long terminal repeat and nef gene variants of human immunodeficiency virus type 1 in perinatally infected long-term survivors and rapid progressors. AIDS Research and Human Retroviruses 13, 1611-1623.[CrossRef]
    [Google Scholar]
  47. Roy, A. L., Meisterernst, M., Pognonec, P. & Roeder, R. G. ( 1991; ). Cooperative interaction of an initiator-binding transcription initiation factor and the helix-loop-helix activator USF. Nature 354, 245-248.[CrossRef]
    [Google Scholar]
  48. Roy, A. L., Du, H., Gregor, P. D., Novina, C. D., Martinez, E. & Roeder, R. G. ( 1997; ). Cloning of an inr- and E-box-binding protein, TFII-I, that interacts physically and functionally with USF1. EMBO Journal 16, 7091-7104.[CrossRef]
    [Google Scholar]
  49. Sawadogo, M. & Roeder, R. G. ( 1985a; ). DNA-binding specificity of USF, a human gene-specific transcription factor required for maximum expression of the major late promoter of adenovirus. In DNA Tumor Viruses: Control of Gene Expression and Replication (Cancer Cells, 4) , pp. 147-154. Edited by M. Botchan, T. Grodzicker & P. A. Sharp. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory.
  50. Sawadogo, M. & Roeder, R. G. ( 1985b; ). Factors involved in specific transcription by human RNA polymerase II: analysis by a rapid and quantitative in vitro assay. Proceedings of the National Academy of Sciences, USA 82, 4394-4398.[CrossRef]
    [Google Scholar]
  51. Sawadogo, M., Van Dyke, M. W., Gregor, P. D. & Roeder, R. G. ( 1988; ). Multiple forms of the human gene-specific transcription factor USF. I. Complete purification and identification of USF from HeLa cell nuclei. Journal of Biological Chemistry 263, 11985-11993.
    [Google Scholar]
  52. Sieweke, M. H., Tekotte, H., Jarosch, U. & Graf, T. ( 1998; ). Cooperative interaction of ets-1 with USF-1 required for HIV-1 enhancer activity in T-cells. EMBO Journal 17, 1728-1739.[CrossRef]
    [Google Scholar]
  53. Simm, M., Chao, W., Pekarskaya, O., Sova, P., Gupta, P., Balachandran, R. & Volsky, D. J. ( 1996; ). Genetic variability and function of the long terminal repeat from syncytium-inducing and non-syncytium-inducing human immunodeficiency virus type 1. AIDS Research and Human Retroviruses 12, 801-809.[CrossRef]
    [Google Scholar]
  54. Smith, M. R. & Greene, W. C. ( 1989; ). The same 50 kDa cellular protein binds to the negative regulatory elements of the interleukin 2 receptor alpha-chain gene and the human immunodeficiency virus type 1 long terminal repeat. Proceedings of the National Academy of Sciences, USA 86, 8526-8530.[CrossRef]
    [Google Scholar]
  55. Sokolowski, M., Tan, W., Jellne, M. & Schwartz, S. ( 1998; ). mRNA instability elements in the human papillomavirus type 16 L2 coding region. Journal of Virology 72, 1504-1515.
    [Google Scholar]
  56. Soto-Ramirez, L. E., Renjifo, B., McLane, M. F., Marlink, R., O’Hara, C., Sutthent, R., Wasi, C., Vithayasai, P., Vithayasai, V., Apichartpiyakul, C., Auewarakul, P., Pena Cruz, V., Chui, D. S., Osathanondh, R., Mayer, K., Lee, T. H. & Essex, M. ( 1996; ). HIV-1 Langerhans’ cell tropism associated with heterosexual transmission of HIV. Science 271, 1291-1293.[CrossRef]
    [Google Scholar]
  57. Tan, W., Felber, B. K., Zolotukhin, A. S., Pavlakis, G. N. & Schwartz, S. ( 1995; ). Efficient expression of the human papillomavirus type 16 L1 protein in epithelial cells by using Rev and the Rev-responsive element of human immunodeficiency virus or the cis-acting transactivation element of simian retrovirus type 1. Journal of Virology 69, 5607-5620.
    [Google Scholar]
  58. Tesmer, V. M., Rajadhyaksha, A., Babin, J. & Bina, M. ( 1993; ). NF-IL6-mediated transcriptional activation of the long terminal repeat of the human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences, USA 90, 7298-7302.[CrossRef]
    [Google Scholar]
  59. Triques, K., Bourgeois, A., Vidal, N., Mpoudi-Ngole, E., Mulanga-Kabeya, C., Nzilambi, N., Torimiro, N., Saman, E., Delaporte, E. & Peeters, M. ( 2000; ). Near-full-length genome sequencing of divergent African HIV type 1 subtype F viruses leads to the identification of a new HIV type 1 subtype designated K. AIDS Research and Human Retroviruses 16, 139-151.[CrossRef]
    [Google Scholar]
  60. Tscherning, C., Alaeus, A., Fredriksson, R., Bjorndal, A., Deng, H., Littman, D. R., Fenyo, E. M. & Albert, J. ( 1998; ). Differences in chemokine coreceptor usage between genetic subtypes of HIV-1. Virology 241, 181-188.[CrossRef]
    [Google Scholar]
  61. Verhoef, K., Sanders, R. W., Fontaine, V., Kitajima, S. & Berkhout, B. ( 1999; ). Evolution of the human immunodeficiency virus type 1 long terminal repeat promoter by conversion of an NF-kappaB enhancer element into a GABP binding site. Journal of Virology 73, 1331-1340.
    [Google Scholar]
  62. WHO (1998). Report on the global HIV/AIDS epidemic. WHO Report. (June 1998).
  63. Zeichner, S. L., Kim, J. Y. & Alwine, J. C. ( 1991; ). Linker-scanning mutational analysis of the transcriptional activity of the human immunodeficiency virus type 1 long terminal repeat. Journal of Virology 65, 2436-2444.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-3-547
Loading
/content/journal/jgv/10.1099/0022-1317-82-3-547
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error