The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response Free

Abstract

African swine fever virus ASFV/NH/P68 is a naturally occurring, non-haemadsorbing and non-fatal isolate. Longitudinal clinical and immunological studies on 31 pigs inoculated oronasally or intramuscularly with this isolate defined two discrete groups of animals: those developing ASF chronic type lesions and those remaining asymptomatic. Animals developing lesions had viraemia and fever late after infection, NK activity levels close to that of control animals and high levels of anti-ASFV specific antibodies together with a marked hypergammaglobulinaemia involving IgG1, IgG2, IgM and IgA immunoglobulin isotypes. Pigs remaining asymptomatic after infection, on the other hand, did not have viraemia or fever after day 14 post-infection and had elevated NK cell activity, but normal plasma Ig concentrations and relatively low specific anti-virus antibody concentrations throughout the duration of the experiments. Importantly, the latter group of pigs virus were resistant to subsequent challenge with the highly virulent ASFV/L60 isolate and survived with no major changes in any of the parameters examined and referred to above. Finally, lymphoproliferative responses to the mitogens concanavalin A, phytohaemagglutinin and pokeweed mitogen were not depressed in either of the two clinically defined groups of pigs. Thus further studies with this infection model may provide new insights on mechanisms of protective immunity to ASFV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-3-513
2001-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/3/0820513a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-3-513&mimeType=html&fmt=ahah

References

  1. Arala-Chaves M. P., Ribeiro A. S., Vilanova M., Porto M. T., Santarem M. M., Lima M. 1988; Correlation between B-cell mitogenicity and immunosuppressor effects of a protein released by porcine monocytes infected with African swine fever virus. American Journal of Veterinary Research 49:1955–1961
    [Google Scholar]
  2. Biron C. A., Nguyen K. B., Pien G. C., Cousens L. P., Salazar-Mather T. P. 1999; Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annual Review of Immunology 17:189–220
    [Google Scholar]
  3. Borca M. V., Carrillo C., Zsak L., Laegreid W. W., Kutish G. F., Neilan J. G., Burrage T. G., Rock D. L. 1998; Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. Journal of Virology 72:2881–2889
    [Google Scholar]
  4. Childerstone A., Takamatsu H., Yang H., Denyer M., Parkhouse R. M. 1998; Modulation of T cell and monocyte function in the spleen following infection of pigs with African swine fever virus. Veterinary Immunology and Immunopathology 62:281–296
    [Google Scholar]
  5. Dixon L. K., Costa J. V., Escribano J. M., Kock D. L., Viñuela E., Wilkinson P. J. 2000; Family Asfarviridae . In Virus Taxonomy: Classification and Nomenclature of Viruses . Seventh Report of the International Committee on Taxonomy of Viruses. pp 159–165 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., McGeoch D. J., Maniloff J., Mayo M. A., Pringle C. R., Wickner R. B. San Diego: Academic Press;
  6. Esparza I., Gonzalez J. C., Viñuela E. 1988; Effect of interferon-α and interferon-γ and tumour necrosis factor on African swine fever virus replication in porcine monocytes and macrophages. Journal of General Virology 69:2973–2980
    [Google Scholar]
  7. Galindo I., Viñuela E., Carrascosa A. L. 2000; Characterization of the African swine fever virus protein p49: a new late structural polypeptide. Journal of General Virology 81:59–65
    [Google Scholar]
  8. Gonzalez S., Mendoza S., Sanchez-Vizcaiño J. M., Alonso F. 1990; Inhibitory effect of African swine fever virus on lectin-dependent swine lymphocyte proliferation. Veterinary Immunology and Immunopathology 26:71–80
    [Google Scholar]
  9. Knudsen R. C., Genovesi E. V. 1987; In vivo and in vitro effects of moderately virulent African swine fever virus on mitogenesis of pig lymphocytes. Veterinary Immunology and Immunopathology 15:323–336
    [Google Scholar]
  10. Leitão A., Malur A., Cornelis P., Martins C. 1998; Identification of a 25-amino acid sequence from the major African swine fever virus (ASFV) structural protein VP72 recognised by porcine cytotoxic T lymphocytes using a lipoprotein based expression system. Journal of Virological Methods 75:113–119
    [Google Scholar]
  11. Leitão A., Malur A., Cartaxeiro C., Vasco G., Cruz B., Cornelis P., Martins C. L. V. 2000; Bacterial lipoprotein based expression vectors as tools for the characterisation of African swine fever virus (ASFV) antigens. Archives of Virology 145:1639–1657
    [Google Scholar]
  12. Manso Ribeiro J. J., Azevedo J. A. 1961; La peste porcine Africane au Portugal. Bulletin de l’Office International des Epizooties 55:88–108
    [Google Scholar]
  13. Martins C., Leitão A. 1994; Porcine immune responses to African swine fever virus (ASFV) infection. Veterinary Immunology and Immunopathology 43:99–106
    [Google Scholar]
  14. Martins C., Scholl T., Mebus C. A., Fish H., Lawman M. J. P. 1988; Modulation of porcine peripheral blood derived macrophages functions by in vitro infection with ASFV isolates of different virulence. Viral Immunology 1:177–190
    [Google Scholar]
  15. Martins C., Lawman M., Schol T., Mebus C., Lunney J. 1993; African swine fever virus specific porcine cytotoxic T cell activity. Archives of Virology 129:211–225
    [Google Scholar]
  16. Mendonza C., Videgain S. P., Alonso F. 1991; Inhibition of natural killer activity in porcine mononuclear cells by African swine fever virus. Research in Veterinary Science 51:317–321
    [Google Scholar]
  17. Norley S. G., Wardley R. C. 1983; Investigation of porcine natural-killer cell activity with reference to African swine fever virus infection. Immunology 49:593–597
    [Google Scholar]
  18. Paez E., Garcia F., Gil-Fernandez C. 1990; Interferon cures cells lytically and persistently infected with African swine fever virus in vitro . Archives of Virology 112:115–127
    [Google Scholar]
  19. Pan I. C. 1987; Spontaneously susceptible cells and cell culture methodologies for African swine fever virus. In African Swine Fever pp 9–126 Edited by Becker Y. Boston: Martinus Nijhoff;
    [Google Scholar]
  20. Pan I. C., Hess W. R. 1984; Virulence in African swine fever: its measurement and implications. American Journal of Veterinary Research 45:361–366
    [Google Scholar]
  21. Pan I. C., DeBoer C. J., Heuschele W. P. 1970; Hypergammaglobulinemia in swine infected with African swine fever virus (34794). Proceedings of the Society for Experimental Biology and Medicine 134:367–371
    [Google Scholar]
  22. Petisca N. J. 1965; Quelques aspects morphologiques des suites de la vaccination contre la peste porcine Africaine (virose L) au Portugal. Bulletin de l’Office International des Epizooties 63:199–237
    [Google Scholar]
  23. Pini A., Wagenaar G. 1974; Isolation of a non-haemadsorbing strain of African swine fever (ASF) virus from a natural outbreak of the disease. Veterinary Records 94:2
    [Google Scholar]
  24. Plowright W., Thomson G. R., Neser J. A. 1994; African swine fever. In Infectious Diseases of Livestock pp 568–599 Edited by Coetzer J. A. W., Thomson G. R., Tustin R. C. Oxford: Oxford University Press;
    [Google Scholar]
  25. Ramiro-Ibañez F., Ortega A., Ruiz-Gonzalvo F., Escribano J. M., Alonso C. 1997; Modulation of immune cell populations and activation markers in the pathogenesis of African swine fever virus infection. Virus Research 47:31–40
    [Google Scholar]
  26. Ribeiro A. S., Arala-Chaves M. P., Vilanova M., Porto M. T., Coutinho A. 1991; Role of B and T lymphocytes in the specific immunosuppression induced by a protein released by porcine monocytes infected with African swine fever virus. International Immunology 3:165–174
    [Google Scholar]
  27. Rodriguez J. M., Yáñez R. J., Almazan F., Viñuela E., Rodriguez J. F. 1993; African swine fever virus encodes a CD2 homologue responsible for the adhesion of erythrocytes to infected cells. Journal of Virology 67:5312–5320
    [Google Scholar]
  28. Ruiz-Gonzalvo F., Rodriguez F., Escribano J. M. 1996; Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology 218:285–289
    [Google Scholar]
  29. Saalmüller A., Hirt W., Maurer S., Weiland E. 1994; Discrimination between two subsets of porcine CD8+ cytolytic T lymphocytes by the expression of CD5 antigen. Immunology 81:578–83
    [Google Scholar]
  30. Sanchez-Vizcaiño J. M., Slauson D. O., Ruiz-Gonzalvo F., Valero F. 1981; Lymphocyte function and cell-mediated immunity in pigs with experimentally induced African swine fever. American Journal of Veterinary Research 42:1335–1341
    [Google Scholar]
  31. Scholl T., Lunney J. K., Mebus C. A., Duffy E., Martins C. L. V. 1989; Virus-specific cellular blastogenesis and interleukin-2 production in swine after recovery from African swine fever. American Journal of Veterinary Research 50:1781–1786
    [Google Scholar]
  32. Takamatsu H., Denyer M. S., Oura C., Childerstone A., Andersen J. K., Pullen L., Parkhouse R. M. 1999; African swine fever virus: a B cell-mitogenic virus in vivo and in vitro. Journal of General Virology 80:1453–1461
    [Google Scholar]
  33. Thomson G. R., Gainaru M. D., Van Dellen A. F. 1979; African swine fever: pathogenicity of two non-haemadsorbing viruses. Onderstepoort Journal of Veterinary Research 46:149–154
    [Google Scholar]
  34. Vigário J. D., Terrinha A. M., Moura Nunes J. F. 1974; Antigenic relationship among strains of African swine fever virus. Archiv für die gesamte Virusforschung 45:272–277
    [Google Scholar]
  35. Vilanova M., Ferreira P., Ribeiro A., Arala-Chaves M. 1999; The biological effects induced in mice by p36, a proteinaceous factor of virulence produced by African swine fever virus, are mediated by interleukin-4 and also to a lesser extent by interleukin-10. Immunology 96:389–395
    [Google Scholar]
  36. Wardley R. C. 1982; Effect of African swine fever on lymphocyte mitogenesis. Immunology 46:215–220
    [Google Scholar]
  37. Wardley R. C., Wilkinson P. J. 1980; Lymphocyte responses to African swine fever virus infection. Research in Veterinary Science 28:185–189
    [Google Scholar]
  38. Wardley R. C., Norley S. G., Martins C. V., Lawman M. J. P. 1987; The host response to African swine fever virus. Progress in Medical Virology 34:180–192
    [Google Scholar]
  39. Yang H., Parkhouse R. M. 1996; Phenotypic classification of porcine lymphocyte subpopulations in blood and lymphoid tissues. Immunology 89:76–83
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-3-513
Loading
/content/journal/jgv/10.1099/0022-1317-82-3-513
Loading

Data & Media loading...

Most cited Most Cited RSS feed