1887

Abstract

Retroviral vectors provide the means for gene transfer with long-term expression. The lentivirus subgroup of retroviruses, such as human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2), possesses a number of regulatory and accessory genes and other special elements. These features can be exploited to design vectors for transducing non-dividing as well as dividing cells with the potential for regulated transgene expression. Encapsidation of the transgene RNA in lentiviral vectors is determined by the leader sequence-based multipartite packaging signal. Embedded in the packaging signal is a major splice donor site that, this study shows, is not by itself essential for transgene expression or encapsidation. We designed HIV-2 vectors that contained all the sequence elements thought to be necessary and sufficient for vector RNA encapsidation. Unexpectedly, despite abundant expression, only a small fraction of the transgene RNA was encapsidated and the titre of the vector was low. Redesign of the vector with a mutant splice donor resulted in increased vector RNA encapsidation and yielded vectors with high titre. Inefficient encapsidation by the conventionally designed vector was not due to suboptimal Rev responsive element (RRE)–Rev function. Varying the length of RRE in the vector did not change vector RNA encapsidation, nor did the introduction of a synthetic intron into the mutant vector. The vector RNA with the intact splice donor may have been excessively spliced, decreasing the amount of packageable RNA. A titre of 10 transducing units (TU)/ml was readily obtained for vectors with the or GFP transgene, and the vector could be concentrated to a titre of 1–5×10  TU/ml.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-2-425
2001-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/2/0820425a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-2-425&mimeType=html&fmt=ahah

References

  1. Akkina R. K., Walton R. M., Chen M. L., Li Q. X., Planelles V., Chen I. S. 1996; High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type-1 based vector pseudotyped with vesicular stomatitis virus envelop glycoprotein G. Journal of Virology 70:2581–2585
    [Google Scholar]
  2. Aldovini A., Young R. A. 1990; Mutations and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. Journal of Virology 64:1920–1926
    [Google Scholar]
  3. Al-Harthi L., Owais M., Arya S. K. 1998; Molecular inhibition of HIV type 1 by HIV type 2; effectiveness in human peripheral blood mononuclear cells. AIDS Research and Human Retroviruses 14:59–64
    [Google Scholar]
  4. Amado R. G., Chen I. S. Y. 1999; Lentiviral vectors–the promise of gene therapy within reach?. Science 285:674–676
    [Google Scholar]
  5. Arya S. K. 1993; Human immunodeficiency virus type 2 (HIV-2) transactivator (Tat): functional domains and the search for transdominant negative mutants. AIDS Research and Human Retroviruses 9:839–848
    [Google Scholar]
  6. Arya S. K., Gallo R. C. 1988; Human immunodeficiency virus type 2 long terminal repeat: analysis of regulatory elements. Proceedings of the National Academy of Sciences, USA 85:9753–9757
    [Google Scholar]
  7. Arya S. K., Gallo R. C. 1996a; Advances in genetics: gene therapy. In . One World: The Health and Survival of the Human Species in the 21st Century pp. 49–57.6 Edited by Lanza R. Santa Fe, NM: Health Press;
    [Google Scholar]
  8. Arya S. K., Gallo R. C. 1996b; Human immunodeficiency virus (HIV) type-2 mediated inhibition of HIV type-1: a new approach to gene therapy of HIV infection. Proceedings of the National Academy of Sciences, USA 93:4486–4491
    [Google Scholar]
  9. Arya S. K., Sadaie M. R. 1993; Fusogenicity of mutant and chimeric proviruses derived from molecular clones of cytopathic and non-cytopathic human immunodeficiency virus type 2. Journal of Acquired Immunodeficiency Syndrome 6:1205–1211
    [Google Scholar]
  10. Arya S. K., Zamani M., Gallo R. C. 1994; HIV-2 inhibits HIV-1. AIDS Research and Human Retroviruses 10:515S
    [Google Scholar]
  11. Arya S. K., Zamani M., Kundra P. 1998; HIV-2 lentivirus vectors for gene transfer: expression and potential for helper virus free packaging. Human Gene Therapy 9:1371–1380
    [Google Scholar]
  12. Berkowitz R. D., Hammarskjold M.-L., Helga-Maria C., Rekosh D., Goff S. P. 1995; 5′-region of HIV-1 RNAs are not sufficient for encapsidation: implications for the HIV-1 packaging signal. Virology 212:718–723
    [Google Scholar]
  13. Blomer U., Naldini L., Kafri T., Trono D., Verma I. M., Gage F. H. 1997; Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. Journal of Virology 71:6641–6649
    [Google Scholar]
  14. Borg K. T., Favaro J. P., Arrigo S. J. 1997; Involvement of human immunodeficiency virus type-1 splice sites in the cytoplasmic accumulation of viral RNA. Virology 236:95–103
    [Google Scholar]
  15. Browning C. M., Cagnon L., Good P. D., Rossi J., Engelke D. R., Markovitz D. M. 1999; Potent inhibition of human immunodeficiency virus type 1 (HIV-1) gene expression and virus production by an HIV-2 Tat activation-response RNA decoy. Journal of Virology 73:5191–5198
    [Google Scholar]
  16. Corbeau P., Kraus G., Wong-Staal F. 1996; Efficient gene transfer of a human immunodeficiency virus type 1 (HIV-1)-derived vector utilizing a stable HIV packaging cell line. Proceedings of the National Academy of Sciences, USA 93:14070–14075
    [Google Scholar]
  17. Cui Y., Iwakuma T., Chang L. J. 1999; Contribution of viral splice sites and cis-regulatory elements to lentivirus vector function. Journal of Virology 73:6171–6176
    [Google Scholar]
  18. Dillon P. J., Nolbock P., Perkins A., Rosen C. A. 1990; Function of the human immunodeficiency virus types 1 and 2 Rev proteins is dependent on their ability to interact with a structured region present in env gene mRNA. Journal of Virology 64:4428–4437
    [Google Scholar]
  19. DiMarzio P., Choe S., Ebright M., Knoblauch R. K., Landau N. R. 1995; Mutational analysis of cell cycle arrest, nuclear localization and virion packaging of human immunodeficiency virus type 1 Vpr. Journal of Virology 69:7909–7916
    [Google Scholar]
  20. Fletcher T. M., Brichacek B., Sharova N., Newman M. A., Stivahtis G., Sharp P. M., Emerman M., Hahn B. H., Stevenson M. 1996; Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIVsm. EMBO Journal 15:6155–6165
    [Google Scholar]
  21. Garzino-Demo A., Gallo R. C., Arya S. K. 1995; Human immunodeficiency virus type 2 (HIV-2): packaging signal and associated negative regulatory element. Human Gene Therapy 6:177–184
    [Google Scholar]
  22. Kafri T., Blomer U., Peterson D. A., Gage F. H., Verma I. M. 1997; Sustained expression of genes delivered directly into liver and muscle by HIV-1 lentivirus vectors. Nature Genetics 17:314–317
    [Google Scholar]
  23. Kafri T., Praag H. V., Quyang L., Gage F. H., Verma I. M. 1999; A packaging cell line for lentivirus vectors. Journal of Virology 72:576–584
    [Google Scholar]
  24. Kaul M., Yu H., Dougherty J. P. 1998; Regulated lentiviral packaging cell line devoid of most viral cis-acting sequences. Virology 249:167–174
    [Google Scholar]
  25. Kumar P., Hui H. X., Kapppes J. C., Haggarty B. S., Hoxie J. A., Arya S. K., Shaw G. M., Hahn B. H. 1990; Molecular characterization of an attenuated human immunodeficiency virus type 2 isolate. Journal of Virology 64:890–901
    [Google Scholar]
  26. Lever A. M. L., Gottlinger H., Haseltine W., Sodroski J. 1989; Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. Journal of Virology 63:4085–4087
    [Google Scholar]
  27. Luban J., Goff S. P. 1994; Mutational analysis of cis-acting packaging signals in human immunodeficiency virus type 1 RNA. Journal of Virology 68:3784–3793
    [Google Scholar]
  28. McBride M. S., Panganiban A. T. 1996; The human immunodeficiency virus type 1 encapsidation site is a multipartite RNA element composed of functional hairpin structures. Journal of Virology 70:2963–2973
    [Google Scholar]
  29. McBride M. S., Schwartz M. D., Panganiban A. T. 1997; Efficient encapsidation of human immunodeficiency virus type 1 vectors and further characterization of cis elements required for encapsidation. Journal of Virology 71:4544–4554
    [Google Scholar]
  30. McCann E. M., Lever A. M. 1997; Location of cis-acting signals important for RNA encapsidation in the leader sequence of human immunodeficiency virus type 2. Journal of Virology 71:4133–4137
    [Google Scholar]
  31. Mahalingam S., Ayyavoo V., Patel M., Kieber-Emmons T., Weiner D. B. 1997; Nuclear import, virion incorporation, and cell cycle arrest/differentiation are mediated by distinct functional domains of human immunodeficiency virus type 1 Vpr. Journal of Virology 71:6339–6347
    [Google Scholar]
  32. Maldarelli F., Martin M. A., Strebel K. 1991; Identification of post-transcriptionally active inhibitory sequences in human immunodeficiency virus type 1 RNA: novel level of gene regulation. Journal of Virology 65:5732–5743
    [Google Scholar]
  33. Malim M. H., Cullen B. R. 1993; Rev and the fate of pre-mRNA in the nucleus: implications for the regulation of RNA processing in eukaryotes. Molecular and Cellular Biology 13:6180–6189
    [Google Scholar]
  34. Miller A. D. 1997; Development and applications of retroviral vectors. In Retroviruses pp 437–473 Edited by Coffin J. M., Hughes S. H., Varmus H. E. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Miyoshi H., Blomer U., Takahashi M., Gage F. H., Verma I. M. 1998; Development of a self-inactivating lentivirus vector. Journal of Virology 72:8150–8157
    [Google Scholar]
  36. Mochizuki H., Schwartz J. P., Tanak K., Brady R. O., Reiser J. 1998; High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. Journal of Virology 72:8873–8883
    [Google Scholar]
  37. Naldini L., Blomer U., Gallay P., Ory D., Mulligan R., Gage F. H., Verma I. M., Trono D. 1996; In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267
    [Google Scholar]
  38. Parolin C., Dorfman T., Palu G., Gottinger H., Sodroski J. 1994; Analysis of human immunodeficiency virus type 1 vectors of cis-acting sequences that affect gene transfer in human lymphocytes. Journal of Virology 68:3888–3895
    [Google Scholar]
  39. Poeschla E., Gilbert J., Huang S., Ho A., Wong-Staal F. 1998; Identification of a human immunodeficiency virus type 2 (HIV-2) encapsidation determinant and transduction of nondividing human cells by HIV-2-based lentivirus vectors. Journal of Virology 72:6527–6536
    [Google Scholar]
  40. Rogel M. E., Wu L. I., Emerman M. 1995; The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection. Journal of Virology 69:882–888
    [Google Scholar]
  41. Sadaie M. R., Zamani M., Whang S., Sistron N., Arya S. K. 1998; Towards developing HIV-2 lentivirus-based retroviral vectors for gene therapy: dual gene expression in the context of HIV-2 LTR and Tat. Journal of Medical Virology 54:118–128
    [Google Scholar]
  42. Schneider R., Campbell M., Nasioulas G., Felber B. K., Pavlakis G. N. 1997; Inactivation of the human immunodeficiency virus type 1 inhibitory elements allow Rev-independent expression of Gag and Gag/Protease and particle formation. Journal of Virology 7:4892–4903
    [Google Scholar]
  43. Schwartz S., Felber B. K., Pavlakis G. N. 1992; Distinct RNA sequences in the gag region of human immunodeficiency virus type 1 decrease RNA stability and inhibits expression in the absence of Rev protein. Journal of Virology 66:150–159
    [Google Scholar]
  44. Srinivasakumar N., Chazal N., Helga-Maria C., Prasad S., Hammarskjold M. L., Rekosh D. 1997; The effect of viral regulatory protein expression on gene delivery by human immunodeficiency virus type 1 vectors produced in stable packaging cell lines. Journal of Virology 71:5841–5848
    [Google Scholar]
  45. Tan W., Schalling M., Zhao C., Luukkonen M., Nilsson M., Fenyo E. M., Pavlakis G. N., Schwartz S. 1996; Inhibitory activity of the equine infectious anemia virus major 5′ splice site in the absence of Rev. Journal of Virology 70:3645–3659
    [Google Scholar]
  46. Verma I. M., Somia N. 1997; Gene therapy – promises, problems and prospects. Nature 389:239–242
    [Google Scholar]
  47. Zufferey R., Nagy D., Mandel R. J., Naldini L., Trono D. 1997; Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nature Biotechnology 15:871–875
    [Google Scholar]
  48. Zufferey R., Dull T., Mandel R. J., Bukovsky A., Quiroz D., Naldini L., Trono D. 1998; Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. Journal of Virology 72:9873–9880
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-2-425
Loading
/content/journal/jgv/10.1099/0022-1317-82-2-425
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error