1887

Abstract

We have previously shown that Epstein–Barr virus (EBV)-encoded EBNA-5 is localized to PML bodies (PODs) in EBV-immortalized lymphoblastoid cell lines (LCLs). Here we have extended our study of the subnuclear localization of EBNA-5 and found a strict co-localization with PML in LCLs and in BL lines with an immunoblastic, LCL-like phenotype. Moreover, GFP–EBNA-5 accumulated in PML bodies upon transfection into LCLs. In contrast, transfection of cell lines of non-immunoblastic origin with an EBNA-5 expression construct showed preferential localization of the protein to the nucleoplasm. Since PML is involved in proteasome-dependent protein degradation, we investigated the total levels and sub-cellular localization of EBNA-5 upon inhibition of proteasome activity. We found that a proteasome inhibitor, MG132, induced the translocation of both endogenous and transfected EBNA-5 to the nucleoli in every cell line tested. The total EBNA-5 protein levels were not affected by the proteasomal block. EBNA-5 forms complexes with heat shock protein Hsp70. The proteasome inhibitor induced a rise in total levels of Hsp70 and dramatically changed its homogeneous nuclear and cytoplasmic distribution into nucleolar and cytoplasmic. This effect was EBNA-5-independent. The nucleolar localization of Hsp70 was enhanced by the presence of EBNA-5, however. EBNA-5 also enhanced the nucleolar translocation of a mutant p53 in a colon cancer line, SW480, treated with MG132. The coordinated changes in EBNA-5 and Hsp70 localization and the effect of EBNA-5 on mutant p53 distribution upon MG132 treatment might reflect the involvement of EBNA-5 in the regulation of intracellular protein trafficking associated with the proteasome-mediated degradation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-2-345
2001-02-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/2/0820345a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-2-345&mimeType=html&fmt=ahah

References

  1. Abarzua, P., LoSardo, J. E., Gubler, M. L. & Neri, A. ( 1995; ). Microinjection of monoclonal antibody PAb421 into human SW480 colorectal carcinoma cells restores the transcription activation function to mutant p53. Cancer Research 55, 3490-3494.
    [Google Scholar]
  2. Alfiery, C., Birkenbach, M. & Kieff, E. ( 1991; ). Early events in Epstein–Barr virus infection of human B lymphocytes. Virology 181, 595-608.[CrossRef]
    [Google Scholar]
  3. Anton, L. C., Schubert, U., Bacik, I., Princiotta, M. F., Wearsch, P. A., Gibbs, J., Day, P. M., Realini, C., Rechsteiner, M. C., Bennink, J. R. & Yewdell, J. W. ( 1999; ). Intracellular localization of proteasomal degradation of a viral antigen. Journal of Cell Biology 146, 113-124.[CrossRef]
    [Google Scholar]
  4. Ben-Bassat, H., Goldblum, N., Mitrani, S., Goldblum, T., Yoffey, J. M., Cohen, M. M., Bentwich, Z., Ramot, B., Klein, E. & Klein, G. ( 1977; ). Establishment in continuous culture of a new type of lymphocyte from a ‘Burkitt like’ malignant lymphoma (line D. G.-75). International Journal of Cancer 19, 27-33.[CrossRef]
    [Google Scholar]
  5. Bush, K. T., Goldberg, A. L. & Nigam, S. K. ( 1997; ). Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. Journal of Biological Chemistry 272, 9086-9092.[CrossRef]
    [Google Scholar]
  6. Chelbi-Alix, M. K. & de The, H. ( 1999; ). Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins. Oncogene 18, 935-941.[CrossRef]
    [Google Scholar]
  7. Ciechanover, A. ( 1998; ). The ubiquitin–proteasome pathway: on protein death and cell life. EMBO Journal 17, 7151-7160.[CrossRef]
    [Google Scholar]
  8. Cludts, I. & Farrell, P. J. ( 1998; ). Multiple functions within the Epstein–Barr virus EBNA-3A protein. Journal of Virology 72, 1862-1869.
    [Google Scholar]
  9. Finke, J., Rowe, M., Ernberg, I., Rosen, A., Dillner, J. & Klein, G. ( 1987; ). Monoclonal and polyclonal antibodies against Epstein–Barr virus nuclear antigen 5 (EBNA-5) detect multiple protein species in Burkitt’s lymphoma and lymphoblastoid cell lines. Journal of Virology 61, 3870-3878.
    [Google Scholar]
  10. Fourie, A. M., Hupp, T. R., Lane, D. P., Sang, B. C., Barbosa, M. S., Sambrook, J. F. & Gething, M. J. ( 1997; ). HSP70 binding sites in the tumor suppressor protein p53. Journal of Biological Chemistry 272, 19471-19479.[CrossRef]
    [Google Scholar]
  11. Harada, S. & Kieff, E. ( 1997; ). Epstein–Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. Journal of Virology 71, 6611-6618.
    [Google Scholar]
  12. Hightower, L. E. ( 1991; ). Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66, 191-197.[CrossRef]
    [Google Scholar]
  13. Holmvall, P. & Szekely, L. ( 1999; ). Computer programs that allow fast aquisition, visualization and overlap quantitation of fluorescent 3D microscopic objects by using nearest-neighbor deconvolution algorithm. Applied Immunohistochemistry & Molecular Morphology 7, 226-236.
    [Google Scholar]
  14. Ishov, A. M., Sotnikov, A. G., Negorev, D., Vladimirova, O. V., Neff, N., Kamitani, T., Yeh, E. T., Strauss, J. F.III & Maul, G. G. ( 1999; ). PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. Journal of Cell Biology 147, 221-234.[CrossRef]
    [Google Scholar]
  15. Kim, D., Kim, S. H. & Li, G. C. ( 1999; ). Proteasome inhibitors MG132 and lactacystin hyperphosphorylate HSF1 and induce hsp70 and hsp27 expression. Biochemical and Biophysical Research Communications 254, 264-268.[CrossRef]
    [Google Scholar]
  16. King, W., Thomas-Powell, A. L., Raab-Traub, N., Hawke, M. & Kieff, E. ( 1980; ). Epstein–Barr virus RNA. V. Viral RNA in a restringently infected, growth-transformed cell line. Journal of Virology 36, 506-518.
    [Google Scholar]
  17. Kitay, M. K. & Rowe, D. T. ( 1996; ). Protein–protein interactions between Epstein–Barr virus nuclear antigen-LP and cellular gene products: binding of 70-kilodalton heat shock proteins. Virology 220, 91-99.[CrossRef]
    [Google Scholar]
  18. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. ( 1997; ). Regulation of p53 stability by Mdm2. Nature 387, 299-303.[CrossRef]
    [Google Scholar]
  19. Mannick, J. B., Tong, X., Hemnes, A. & Kieff, E. ( 1995; ). The Epstein–Barr virus nuclear antigen leader protein associates with hsp72/hsc73. Journal of Virology 69, 8169-8172.
    [Google Scholar]
  20. Muller, S. & Dejean, A. ( 1999; ). Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. Journal of Virology 73, 5137-5143.
    [Google Scholar]
  21. Pinhasi-Kimhi, O., Michalovitz, D., Ben-Zeev, A. & Oren, M. ( 1986; ). Specific interaction between the p53 cellular tumour antigen and major heat shock proteins. Nature 320, 182-184.[CrossRef]
    [Google Scholar]
  22. Quignon, F., De Bels, F., Koken, M., Feunteun, J., Ameisen, J. C. & de The, H. ( 1998; ). PML induces a novel caspase-independent death process. Nature Genetics 20, 259-265.[CrossRef]
    [Google Scholar]
  23. Rickinson, A. B. & Kieff, E. ( 1996; ). Epstein–Barr virus. In Fields Virology , pp. 2397-2436. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia:Lippincott–Raven.
  24. Rowe, M., Rowe, D. T., Gregory, D., Young, L. S., Farrell, P. J., Rupani, H. & Rickinson, A. B. ( 1987; ). Differences in B cell growth phenotype reflect novel patterns of Epstein–Barr virus latent gene expression in Burkitt’s lymphoma cells. EMBO Journal 6, 2743-2751.
    [Google Scholar]
  25. Scheer, U. & Hock, R. ( 1999; ). Structure and function of the nucleolus. Current Opinion in Cell Biology 11, 385-390.[CrossRef]
    [Google Scholar]
  26. Sinclair, A. J., Palmero, I., Peters, G. & Farrell, P. J. ( 1994; ). EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalisation of resting human B lymphocytes by Epstein–Barr virus. EMBO Journal 13, 3321-3328.
    [Google Scholar]
  27. Szekely, L., Selivanova, G., Magnusson, K., Klein, G. & Wiman, K. G. ( 1993; ). EBNA-5, an Epstein–Barr virus encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proceedings of the National Academy of Sciences, USA 90, 5455-5459.[CrossRef]
    [Google Scholar]
  28. Szekely, L., Jiang, W.-Q., Pokrovskaja, K., Wiman, K. G., Klein, G. & Ringertz, N. ( 1995a; ). Reversible nucleolar translocation of Epstein–Barr virus-encoded EBNA-5 and hsp70 proteins after exposure to heat shock or cell density congestion. Journal of General Virology 76, 2423-2432.[CrossRef]
    [Google Scholar]
  29. Szekely, L., Pokrovskaja, K., Jiang, W.-Q., Selivanova, G., Löwber, M., Ringertz, N., Wiman, K. G. & Klein, G. ( 1995b; ). Resting B-cells, EBV-infected B-blasts and established lymphoblastoid cell lines differ in their Rb, p53 and EBNA-5 expression patterns. Oncogene 10, 1869-1874.
    [Google Scholar]
  30. Szekely, L., Pokrovskaja, K., Jiang, W. Q., de The, H., Ringertz, N. & Klein, G. ( 1996; ). The Epstein–Barr virus-encoded nuclear antigen EBNA-5 accumulates in PML-containing bodies. Journal of Virology 70, 2562-2568.
    [Google Scholar]
  31. Wang, Z. G., Ruggero, D., Ronchetti, S., Zhong, S., Gaboli, M., Rivi, R. & Pandolfi, P. P. ( 1998; ). PML is essential for multiple apoptotic pathways. Nature Genetics 20, 266-272.[CrossRef]
    [Google Scholar]
  32. Zheng, P., Guo, Y., Niu, Q., Levy, D. E., Dyck, J. A., Lu, S., Sheiman, L. A. & Liu, Y. ( 1998; ). Proto-oncogene PML controls genes devoted to MHC class I antigen presentation. Nature 396, 373-376.[CrossRef]
    [Google Scholar]
  33. Zhong, S., Muller, S., Ponchetti, S., Freemont, P. S., Dejean, A. & Pandolfi, P. P. ( 2000a; ). Role of SUMO-1-modified PML in nuclear body formation. Blood 95, 2748-2752.
    [Google Scholar]
  34. Zhong, S., Salomoni, P. & Pandolfi, P. P. ( 2000b; ). The transcriptional role of PML and the nuclear body. Nature Cell Biology 2, 85-90.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-2-345
Loading
/content/journal/jgv/10.1099/0022-1317-82-2-345
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error