1887

Abstract

Genetic recombination is an important mechanism of retrovirus variation and diversity. Size variation in the surface (SU) glycoprotein, characterized by duplication and insertion, has been observed during infection with several lentiviruses, including bovine immunodeficiency virus (BIV), equine infectious anaemia virus (EIAV) and human immunodeficiency virus type 1. These duplication/insertion events are thought to occur through a mechanism of template switching/strand transfer during reverse transcription. Studies of RNA recombination in a number of virus systems indicate that -acting sequences can modulate the frequency of template switching/strand transfer. The size variable region of EIAV and BIV SU glycoproteins was examined and an AU-rich region and regions of nucleotide sequence identity that may facilitate template switching/strand transfer were identified. An strand transfer assay using donor and acceptor templates derived from the size variable region in BIV detected both precise and imprecise strand transfer products, in addition to full-length products. Sequence analysis of clones obtained from imprecise strand transfer products showed that 87·5% had crossover sites within 10 nt of the crossover site observed . Mutations in the donor template which altered either the AU-rich region or nucleotide sequence identity dramatically decreased the frequency of imprecise strand transfer. Together, these results suggest that -acting elements can modulate non-homologous recombination events during reverse transcription and may contribute to the genetic and biological diversity of lentiviruses .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-12-2989
2001-12-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/12/0822989a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-12-2989&mimeType=html&fmt=ahah

References

  1. Allain B., Rascle J. B., de Rocquigny H., Roques B., Darlix J.-L. 1998; Cis elements and trans -acting factors required for minus strand DNA transfer during reverse transcription of the genomic RNA of murine leukemia virus. Journal of Molecular Biology 277:225–235
    [Google Scholar]
  2. Anderson J. A., Teufel R. J.II., Yin P. D., Hu W.-S. 1998; Correlated template-switching events during minus-strand DNA synthesis: a mechanism for high negative interference during retroviral recombination. Journal of Virology 72:1186–1194
    [Google Scholar]
  3. Barat C., Lullien V., Schatz O., Keith G., Nugeyre M. T., Gruninger-Leitch F., Barre-Sinoussi F., LeGrice S. F., Darlix J.-L. 1989; HIV-1 reverse transcriptase specifically interacts with the anticodon domain of its cognate primer tRNA. EMBO Journal 8:3279–3285
    [Google Scholar]
  4. Brian D. A., Spaan W. J. M. 1997; Recombination and coronavirus defective interfering RNAs. Seminars in Virology 8:101–111
    [Google Scholar]
  5. Burns D. P. W., Desrosiers R. C. 1994; Envelope sequence variation, neutralizing antibodies, and primate lentivirus persistence. Current Topics in Microbiology and Immunology 188:185–219
    [Google Scholar]
  6. Coffin J. M. 1979; Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. Journal of General Virology 42:1–26
    [Google Scholar]
  7. Coffin J. M. 1992; Genetic diversity and evolution of retroviruses. Current Topics in Microbiology and Immunology 176:143–164
    [Google Scholar]
  8. Cornelissen M., Kampinga G., Zorgdrager F., Goudsmit J. 1996; Human immunodeficiency virus type 1 subtypes defined by env show high frequency of recombinant gag genes. The UN-AIDS network for HIV isolation and characterization. Journal of Virology 70:8209–8212
    [Google Scholar]
  9. Delassus S., Cheynier R., Wain-Hobson S. 1992; Nonhomogeneous distribution of human immunodeficiency virus type 1 proviruses in the spleen. Journal of Virology 66:5642–5645
    [Google Scholar]
  10. DeStefano J. J., Buiser R. G., Mallaber L. M., Fay P. J., Bambara R. A. 1992a; Parameters that influence processive synthesis and site-specific termination by human immunodeficiency virus reverse transcriptase on RNA and DNA templates. Biochimica et Biophysica Acta 1131270–280
    [Google Scholar]
  11. DeStefano J. J., Mallaber L. M., Rodriguez-Rodriguez L., Fay P. J., Bambara R. A. 1992b; Requirements for strand transfer between internal regions of heteropolymer templates by human immunodeficiency virus reverse transcriptase. Journal of Virology 66:6370–6378
    [Google Scholar]
  12. DeStefano J. J., Bambara R. A., Fay P. J. 1994; The mechanism of human immunodeficiency virus reverse transcriptase-catalyzed strand transfer from internal regions of heteropolymeric RNA templates. Journal of Biological Chemistry 269:161–168
    [Google Scholar]
  13. Fouchier R. A. M., Broersen S. M., Brouwer M., Tersmette M., van’t Wout A. B., Groenink M., Schuitemaker H. 1995; Temporal relationship between elongation of the HIV type 1 glycoprotein 120 V2 domain and the conversion toward a syncytium-inducing phenotype. AIDS Research and Human Retroviruses 12:1473–1478
    [Google Scholar]
  14. Fox D. G., Balfe P., Palmer C. P., May J. C., Arnold C., McKeating J. A. 1997; Length polymorphism within the second variable region of the human immunodeficiency virus type 1 envelope glycoprotein affects accessibility of the receptor binding site. Journal of Virology 71:759–765
    [Google Scholar]
  15. Gao F., Robertson D. L., Carruthers C. D., Morrison S. G., Jian B., Chen Y., Barre-Sinoussi F., Girard M., Srinivasan A., Abimiku A. G., Shaw G. M., Sharp P. M., Hahn B. H. 1998; A comprehensive panel of near-full-length clones and reference sequences for non-subtype B isolates of human immunodeficiency virus type 1. Journal of Virology 72:5680–5698
    [Google Scholar]
  16. Groenink M., Fouchier R. A. M., Broersen S., Baker C. H., Koot M., van’t Wout A. B., Huisman H. G., Miedema F., Tersmette M., Schuitemaker H. 1993; Relation of phenotype evolution of HIV-1 to envelope V2 configuration. Science 260:1513–1516
    [Google Scholar]
  17. Guo J., Henderson L. E., Bess J., Kane B., Levin J. G. 1997; Human immunodeficiency virus type 1 nucleocapsid protein promotes efficient strand transfer and specific viral DNA synthesis by inhibiting TAR-dependent self-priming from minus-strand strong-stop DNA. Journal of Virology 71:5178–5188
    [Google Scholar]
  18. Hu W.-S., Temin H. M. 1990a; Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proceedings of the National Academy of Sciences, USA 87:1556–1560
    [Google Scholar]
  19. Hu W.-S., Temin H. M. 1990b; Retroviral recombination and reverse transcription. Science 250:1227–1233
    [Google Scholar]
  20. Kim J. K., Palaniappan C., Wu W., Fay P. J., Bambara R. A. 1997; Evidence for a unique mechanism of strand transfer from the transactivation response region of HIV-1. Journal of Biological Chemistry 272:16769–16777
    [Google Scholar]
  21. Klarmann G. J., Schauber C. A., Preston B. D. 1993; Template-directed pausing of DNA synthesis by HIV-1 reverse transcriptase during polymerization of HIV-1 sequences in vitro . Journal of Biological Chemistry 268:9793–9802
    [Google Scholar]
  22. Lapadat-Tapolsky M., de Rocquigny H., Van Gent D., Roques B., Plasterk R., Darlix J.-L. 1993; Interactions between HIV-1 nucleocapsid protein and viral DNA may have important functions in the viral life cycle. Nucleic Acids Research 21:831–839
    [Google Scholar]
  23. Lapadat-Tapolsky M., Gabus C., Rau M., Darlix J.-L. 1997; Possible roles of HIV-1 nucleocapsid in the specificity of proviral DNA synthesis and in its variability. Journal of Molecular Biology 268:250–260
    [Google Scholar]
  24. Leroux C., Issel C. J., Montelaro R. C. 1997; Novel and dynamic evolution of equine infectious anemia virus genomic quasispecies associated with sequential disease cycles in an experimentally infected pony. Journal of Virology 71:9627–9639
    [Google Scholar]
  25. Li X., Quan Y., Arts E. J., Li Z., Preston B. D., de Rocquigny H., Roques B. P., Darlix J.-L., Kleiman L., Parniak M. A., Wainberg M. A. 1996; Human immunodeficiency virus Type 1 nucleocapsid protein (NCp7) directs specific initiation of minus-strand DNA synthesis primed by human tRNA(Lys3) in vitro : studies of viral RNA molecules mutated in regions that flank the primer binding site. Journal of Virology 70:4996–5004
    [Google Scholar]
  26. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  27. Mikkelsen J. G., Lund A. H., Duch M., Pedersen F. S. 1998; Recombination in the 5′ leader of murine leukemia virus is accurate and influenced by sequence identity with a strong bias toward the kissing-loop dimerization region. Journal of Virology 72:6967–6978
    [Google Scholar]
  28. Nagy P. D., Bujarski J. J. 1996; Homologous RNA recombination in brome mosaic virus: AU-rich sequences decrease the accuracy of crossovers. Journal of Virology 70:415–426
    [Google Scholar]
  29. Nagy P., Bujarski J. J. 1997; Engineering of homologous recombination hotspots with AU-rich sequences in brome mosaic virus. Journal of Virology 71:3799–3810
    [Google Scholar]
  30. Nagy P., Simon A. E. 1997; New insights into the mechanisms of RNA recombination. Virology 235:1–9
    [Google Scholar]
  31. Palaniappan C., Wisniewski M., Wu W., Fay P. J., Bambara R. A. 1996; Misincorporation by HIV-1 reverse transcriptase promotes recombination via strand transfer synthesis. Journal of Biological Chemistry 271:22331–22338
    [Google Scholar]
  32. Palmer C., Balfe P., Fox D., May J. C., Frederiksson R., Fenyo E.-M., McKeating J. A. 1996; Functional characterization of the V1V2 region of human immunodeficiency virus type 1. Virology 220:436–449
    [Google Scholar]
  33. Pathak V. K., Hu W.-S. 1997; ‘Might as well jump!’ template switching by retroviral reverse transcriptase, defective genome formation, and recombination. Seminars in Virology 8:141–150
    [Google Scholar]
  34. Peliska J. A., Benkovic S. J. 1992; Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Science 258:1112–1118
    [Google Scholar]
  35. Pezo V., Wain-Hobson S. 1997; HIV genetic variation: life at the edge. Journal of Infection 34:201–203
    [Google Scholar]
  36. Prats A. C., Sarih L., Gabus C., Litvak S., Keith G., Darlix J.-L. 1988; Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA. EMBO Journal 7:1777–1783
    [Google Scholar]
  37. Robertson D. L., Sharp P. M., McCutchan F. E., Hahn B. H. 1995; Recombination in HIV-1. Nature 374:124–126
    [Google Scholar]
  38. Rodriguez-Rodriguez L., Tsuchihashi Z., Fuentes G. M., Bambara R. A., Fay P. J. 1995; Influence of human immunodeficiency virus nucleocapsid protein on synthesis and strand transfer by the reverse transcriptase in vitro . Journal of Biological Chemistry 270:15005–15011
    [Google Scholar]
  39. Rudensey L. M., Kimata J. T., Long E. M., Chackerian B., Overbaugh J. 1998; Changes in the extracellular envelope glycoprotein of variants that evolve during the course of simian immunodeficiency virus infection SIVMne affect neutralizing antibody recognition, syncytium formation, and macrophage tropism but not replication, cytopathicity, or CCR-5 coreceptor recognition. Journal of Virology 72:209–217
    [Google Scholar]
  40. Shioda T., Oka S., Xin X., Liu H., Harukuni R., Kurotani A., Fukushima M., Hasan M. K., Shiino T., Takebe Y., Iwamoto A., Nagai Y. 1997; In vivo sequencing variability of human immunodeficiency virus type 1 envelope gp120: association of V2 extension with slow disease progression. Journal of Virology 71:4871–4881
    [Google Scholar]
  41. Stuhlmann H., Berg P. 1992; Homologous recombination of copackaged retrovirus RNAs during reverse transcription. Journal of Virology 66:2378–2388
    [Google Scholar]
  42. Suarez D. L., Whetstone C. A. 1995; Identification of hypervariable and conserved regions in the surface envelope gene in the bovine lentivirus. Virology 212:728–733
    [Google Scholar]
  43. Suarez D. L., Whetstone C. A. 1997; Size variation within the second hypervariable region of the surface envelope gene of the bovine lentivirus BIV in experimentally and naturally infected cattle. Journal of Virology 71:2482–2486
    [Google Scholar]
  44. Telesnitsky A., Goff S. P. 1997; Reverse transcriptase and the generation of retroviral DNA. In Retroviruses pp 121–160 Edited by Coffin J. M., Hughes S. H., Varmus H. E. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Topping R., Demoitie M.-A., Shin N. H., Telesnitsky A. 1998; Cis -acting elements required for strong stop acceptor template selection during Moloney murine leukemia virus reverse transcription. Journal of Molecular Biology 281:1–15
    [Google Scholar]
  46. White K. A., Morris T. J. 1995; RNA determinants of junction site selection in RNA virus recombinants and defective interfering RNAs. RNA 1:1029–1040
    [Google Scholar]
  47. Wooley D. P., Bircher L. A., Smith R. A. 1998; Retroviral recombination is nonrandom and sequence dependent. Virology 243:229–234
    [Google Scholar]
  48. Wu W., Blumberg B. M., Fay P. J., Bambara R. A. 1995; Strand transfer mediated by human immunodeficiency virus reverse transcriptase in vitro is promoted by pausing and results in misincorporation. Journal of Biological Chemistry 270:325–332
    [Google Scholar]
  49. Wu W., Henderson L. E., Copeland T. D., Gorelick R. J., Bosche W. J., Rein A., Levin J. G. 1996; Human immunodeficiency virus type 1 nucleocapsid protein reduces reverse transcriptase pausing at a secondary structure near the murine leukemia virus polypurine tract. Journal of Virology 70:7132–7142
    [Google Scholar]
  50. You J. C., McHenry C. S. 1994; Human immunodeficiency virus nucleocapsid protein accelerates strand transfer of the terminally redundant sequences involved in reverse transcription. Journal of Biological Chemistry 269:31491–31495
    [Google Scholar]
  51. Zhang J., Temin H. M. 1993a; 3′ junctions of oncogene-virus sequences and the mechanisms for formation of highly oncogenic retroviruses. Journal of Virology 67:1747–1751
    [Google Scholar]
  52. Zhang J., Temin H. M. 1993b; Rate and mechanism of nonhomologous recombination during a single cycle of retroviral replication. Science 259:234–238
    [Google Scholar]
  53. Zhang J., Temin H. M. 1994; Retrovirus recombination depends on the length of sequence identity and is not error prone. Journal of Virology 68:2409–2414
    [Google Scholar]
  54. Zhang J., Tang L.-Y., Li T., Ma Y., Sapp C. M. 2000; Most retroviral recombinations occur during minus-strand DNA synthesis. Journal of Virology 74:2313–2322
    [Google Scholar]
  55. Zheng Y.-H., Nakaya T., Sentsui H., Kameoka M., Kishi M., Hagiwara K., Takahashi H., Kono Y., Ikuta K. 1997a; Insertions, duplications and substitutions in restricted gp90 regions of equine infectious anaemia virus during febrile episodes in an experimentally infected horse. Journal of General Virology 78:807–820
    [Google Scholar]
  56. Zheng Y.-H., Sentsui H., Nakaya T., Kono Y., Ikuta K. 1997b; In vivo dynamics of equine infectious anemia viruses emerging during febrile episodes: insertions/duplications at the principle neutralizing domain. Journal of Virology 71:5031–5039
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-12-2989
Loading
/content/journal/jgv/10.1099/0022-1317-82-12-2989
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error