1887

Abstract

The nucleotide changes of the DNA polymerase gene and the susceptibility of acyclovir (ACV)-resistant varicella-zoster virus (VZV) mutants to anti-herpetic drugs were determined and compared to those of herpes simplex virus type 1 (HSV-1) mutants. The seven ACV-resistant VZV mutants were classified into three groups, NS, GC and VM, according to the sequences of their DNA polymerase genes. The amino acid substitutions NS and GC were identical in position to the NS and GC mutations in the HSV-1 DNA polymerase mutants, respectively, and the VM amino acid substitution was similar to the HSV-1 VM mutation. All three groups of VZV mutants were susceptible to ACV, phosphonoacetic acid, vidarabine and aphidicolin, at levels similar to those seen with the respective HSV-1 mutants, except for subtle differences that were due possibly to the non-conserved regions in their sequences. Although both the HSV-1 and the VZV DNA polymerase genes show 53% sequence similarity, both viruses essentially show a similar biochemical behaviour.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-11-2761
2001-11-01
2020-05-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/11/0822761a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-11-2761&mimeType=html&fmt=ahah

References

  1. Andrei G., Snoeck R., De Clercq E., Esnouf R., Fiten P., Opdenakker G.. 2000; Resistance of herpes simplex virus type 1 against different phosphonylmethoxyalkyl derivatives of purines and pyrimidines due to specific mutations in the viral DNA polymerase gene. Journal of General Virology81:639–648
    [Google Scholar]
  2. Biron K. K., Elion G. B.. 1980; In vitro susceptibility of varicella-zoster virus to acyclovir. Antimicrobial Agents and Chemotherapy18:443–447
    [Google Scholar]
  3. Boivin G., Edelman C. K., Pedneault L., Talarico C. L., Biron K. K., Balfour H.H. Jr. 1994; Phenotypic and genotypic characterization of acyclovir-resistant varicella-zoster viruses isolated from persons with AIDS. Journal of Infectious Diseases170:68–75
    [Google Scholar]
  4. Boyd M. R., Bacon T. H., Sutton D., Cole M.. 1987; Antiherpesvirus activity of 9-(4-hydroxy-3-hydroxy-methylbut-1-yl)guanine (BRL 39123) in cell culture. Antimicrobial Agents and Chemotherapy31:1238–1242
    [Google Scholar]
  5. Chiou H. C., Kumura K., Hu A., Kerns K. M., Coen D. M.. 1995; Penciclovir-resistance mutations in the herpes simplex virus DNA polymerase gene. Antiviral Chemistry & Chemotherapy6:281–288
    [Google Scholar]
  6. Coen D. M., Fleming H. E. Jr, Leslie L. K., Retondo M. J.. 1985; Sensitivity of arabinosyladenine-resistant mutants of herpes simplex virus to other antiviral drugs and mapping of drug hypersensitivity mutations to the DNA polymerase locus. Journal of Virology53:477–488
    [Google Scholar]
  7. Collins P., Darby G.. 1991; Laboratory studies of herpes simplex virus strains resistant to ACV. Reviews in Medical Virology1:19–28
    [Google Scholar]
  8. Collins P., Larder B. A., Oliver N. M., Kemp S., Smith I. W., Darby G.. 1989; Characterization of a DNA polymerase mutant of herpes simplex virus from a severely immunocompromised patient receiving acyclovir. Journal of General Virology70:375–382
    [Google Scholar]
  9. Davison A. J., Scott J. E.. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology67:1759–1816
    [Google Scholar]
  10. Elion G. B.. 1993; Acyclovir: discovery, mechanism of action, and selectivity. Journal of Medical Virology Suppl. 12–6
  11. Elion G. B., Furman P. A., Fyfe J. A., de Miranda P., Beauchamp L., Schaeffer H. J.. 1977; Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proceedings of the National Academy of Sciences, USA74:5716–5720
    [Google Scholar]
  12. Gibbs J. S., Chiou H. C., Bastow K. F., Cheng Y.-C., Coen D. M.. 1988; Identification of amino acids in herpes simplex virus DNA polymerase involved in substrate and drug recognition. Proceedings of the National Academy of Sciences, USA85:6672–6676
    [Google Scholar]
  13. Hoppenjans W. B., Bibler M. R., Orme R. L., Solinger A. M.. 1990; Prolonged cutaneous herpes zoster in acquired immunodeficiency syndrome. Archives of Dermatology126:1048–1050
    [Google Scholar]
  14. Hwang C. B. C., Ruffner K. L., Coen D. M.. 1992; A point mutation within a distinct conserved region of the herpes simplex virus DNA polymerase gene confers drug resistance. Journal of Virology66:1774–1776
    [Google Scholar]
  15. Ida M., Kageyama S., Sato H., Kamiyama T., Yamamura J., Kurokawa M., Morohashi M., Shiraki K.. 1999; Emergence of resistance to acyclovir and penciclovir in varicella-zoster virus and genetic analysis of acyclovir-resistant variants. Antiviral Research40:155–166
    [Google Scholar]
  16. Jacobson M. A., Berger T. G., Fikrig S., Becherer P., Moohr J. W., Stanat S. C., Biron K. K.. 1990; Acyclovir-resistant varicella zoster virus infection after chronic oral acyclovir therapy in patients with the acquired immunodeficiency syndrome (AIDS). Annals of Internal Medicine112:187–191
    [Google Scholar]
  17. Knopf C. W., Weisshart K.. 1988; The herpes simplex virus DNA polymerase: analysis of the functional domains. Biochimica et Biophysica Acta951:298–314
    [Google Scholar]
  18. Larder B. A., Kemp S. D., Darby G.. 1987; Related functional domains in virus DNA polymerases. EMBO Journal6:169–175
    [Google Scholar]
  19. Marcy A. I., Hwang C. B. C., Ruffner K. L., Coen D. M.. 1990; Engineered herpes simplex virus DNA polymerase point mutants: the most highly conserved region shared among α-like DNA polymerases is involved in substrate recognition. Journal of Virology64:5883–5890
    [Google Scholar]
  20. Pahwa S., Biron K., Lim W., Swenson P., Kaplan M. H., Sadick N., Pahwa R.. 1988; Continuous varicella-zoster infection associated with acyclovir resistance in a child with AIDS. Journal of the American Medical Association260:2879–2882
    [Google Scholar]
  21. Sasadeusz J. J., Tufaro F., Safrin S., Schubert K., Hubinette M. M., Cheung P. K., Sacks S. L.. 1997; Homopolymer mutational hot spots mediate herpes simplex virus resistance to acyclovir. Journal of Virology71:3872–3878
    [Google Scholar]
  22. Shiraki K., Ogino T., Yamanishi K., Takahashi M.. 1983; Isolation of drug resistant mutants of varicella-zoster virus: cross resistance of acyclovir resistant mutants with phosphonoacetic acid and bromodeoxyuridine. Biken Journal26:17–23
    [Google Scholar]
  23. Shiraki K., Ogino T., Yamanishi K., Takahashi M.. 1985; Immunochemical characterization of pyrimidine kinase induced by varicella-zoster virus. Journal of General Virology66:221–229
    [Google Scholar]
  24. Shiraki K., Namazue J., Okuno T., Yamanishi K., Takahashi M.. 1990; Novel sensitivity of acyclovir-resistant varicella-zoster virus to anti-herpetic drugs. Antiviral Chemistry & Chemotherapy1:373–375
    [Google Scholar]
  25. Shiraki K., Hayakawa Y., Mori H., Namazue J., Takamizawa A., Yoshida I., Yamanishi K., Takahashi M.. 1991a; Development of immunogenic recombinant Oka varicella vaccine expressing hepatitis B virus surface antigen. Journal of General Virology72:1393–1399
    [Google Scholar]
  26. Shiraki K., Horiuchi K., Asano Y., Yamanishi K., Takahashi M.. 1991b; Differentiation of Oka varicella vaccine strain from wild varicella-zoster virus strains isolated from vaccinees and household contact. Journal of Medical Virology33:128–132
    [Google Scholar]
  27. Shiraki K., Ochiai H., Namazue J., Okuno T., Ogino S., Hayashi K., Yamanishi K., Takahashi M.. 1992; Comparison of antiviral assay methods using cell-free and cell-associated varicella-zoster virus. Antiviral Research18:209–214
    [Google Scholar]
  28. Snoeck R., Gerard M., Sadzot-Delvaux C., Andrei G., Balzarini J., Reyman D., Ahadi N., De Bruyn J. M., Piette J., Rentier B., Clumeck N., De Clercq E.. 1994; Meningoradiculoneuritis due to acyclovir-resistant varicella-zoster virus in an acquired immune deficiency syndrome patient. Journal of Medical Virology42:338–347
    [Google Scholar]
  29. Talarico C. L., Phelps W. C., Biron K. K.. 1993; Analysis of the thymidine kinase genes from acyclovir-resistant mutants of varicella-zoster virus isolated from patients with AIDS. Journal of Virology67:1024–1033
    [Google Scholar]
  30. Tsurumi T., Maeno K., Nishiyama Y.. 1987; A single-base change within the DNA polymerase locus of herpes simplex virus type 2 can confer resistance to aphidicolin. Journal of Virology61:388–394
    [Google Scholar]
  31. Visse B., Dumont B., Huraux J.-M., Fillet A.-M.. 1998; Single amino acid change in DNA polymerase is associated with foscarnet resistance in a varicella-zoster virus strain recovered from a patient with AIDS. Journal of Infectious Diseases178:S55–S57
    [Google Scholar]
  32. Visse B., Huraux J.-M., Fillet A.-M.. 1999; Point mutations in the varicella-zoster virus DNA polymerase gene confers resistance to foscarnet and slow growth phenotype. Journal of Medical Virology59:84–90
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-11-2761
Loading
/content/journal/jgv/10.1099/0022-1317-82-11-2761
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error