1887

Abstract

Interactions of human immunodeficiency virus type 1 (HIV-1) Vif protein with various forms of Gag and Gag–Pol precursors expressed in insect cells were investigated and by co-encapsidation, co-precipitation and viral protease (PR)-mediated Gag processing assays. Addressing of Gag to the plasma membrane, its budding as extracellular virus-like particles (VLP) and the presence of the p6 domain were apparently not required for Vif encapsidation, as non--myristoylated Δp6-Gag and Vif proteins were co-encapsidated into intracellular VLP. Encapsidation of Vif occurred at significantly higher copy numbers in extracellular VLP formed from N-myristoylated, budding-competent Gag–Pol precursors harbouring an inactive PR domain or in chimaeric VLP composed of Gag and Gag–Pol precursors compared with the Vif content of Pr55Gag VLP. Vif encapsidation efficiency did not seem to correlate directly with VLP morphology, since these chimaeric VLP were comparable in size and shape to Pr55Gag VLP. Vif apparently inhibited PR-mediated Pr55Gag processing , with preferential protection of cleavage sites at the MA–CA and CA–NC junctions. Vif was resistant to PR action under conditions that allowed full Gag processing, and no direct interaction between Vif and PR was detected or . This suggested that inhibition by Vif of PR-mediated Gag processing resulted from interaction of Vif with the Gag substrate and not with the enzyme. Likewise, the higher efficiency of Vif encapsidation by Gag–Pol precursor compared with Pr55Gag was probably not mediated by direct binding of Vif to the Gag–Pol-embedded PR domain, but more likely resulted from a particular conformation of the Gag structural domains of the Gag–Pol precursor.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-11-2719
2001-11-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/11/0822719a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-11-2719&mimeType=html&fmt=ahah

References

  1. Baraz L., Friedler A., Blumenzweig I., Nussinuv O., Chen N., Steinitz M., Gilon C., Kotler M. 1998; Human immunodeficiency virus type 1 Vif-derived peptides inhibit the viral protease and arrest virus production. FEBS Letters 441:419–426
    [Google Scholar]
  2. Borman A. M., Quillent C., Charneau P., Dauguet C., Clavel F. 1995; Human immunodeficiency virus type 1 Vif mutant particles from restrictive cells: role of Vif in correct particle assembly and infectivity. Journal of Virology 69:2058–2067
    [Google Scholar]
  3. Bouyac M., Rey F., Nascimbeni M., Courcoul M., Sire J., Blanc D., Clavel F., Vigne R., Spire B. 1997a; Phenotypically Vif human immunodeficiency virus type 1 is produced by chronically infected restrictive cells. Journal of Virology 71:2473–2477
    [Google Scholar]
  4. Bouyac M., Courcoul M., Bertoia G., Baudat Y., Gabuzda D., Blanc D., Chazal N., Boulanger P., Sire J., Vigne R., Spire B. 1997b; Human immunodeficiency virus type 1 Vif protein binds to the Pr55Gag precursor. Journal of Virology 71:9358–9365
    [Google Scholar]
  5. Bragman K. 1996; Saquinavir: an HIV proteinase inhibitor. Advances in Experimental Medicine and Biology 394:305–317
    [Google Scholar]
  6. Camaur D., Trono D. 1996; Characterization of human immunodeficiency virus type 1 Vif particle incorporation. Journal of Virology 70:6106–6111
    [Google Scholar]
  7. Campbell S., Vogt V. M. 1997; In vitro assembly of virus-like particles with Rous sarcoma virus Gag deletion mutants: identification of the p10 domain as a morphological determinant in the formation of spherical particles. Journal of Virology 71:4425–4435
    [Google Scholar]
  8. Carrière C., Gay B., Chazal N., Morin N., Boulanger P. 1995; Sequence requirements for encapsidation of deletion mutants and chimeras of human immunodeficiency virus type 1 Gag precursor into retrovirus-like particles. Journal of Virology 69:2366–2377
    [Google Scholar]
  9. Chazal N., Carrière C., Gay B., Boulanger P. 1994; Phenotypic characterization of insertion mutants of the human immunodeficiency virus type 1 Gag precursor expressed in recombinant baculovirus-infected cells. Journal of Virology 68:111–122
    [Google Scholar]
  10. Chazal N., Gay B., Carrière C., Tournier J., Boulanger P. 1995; Human immunodeficiency virus type 1 MA deletion mutants expressed in baculovirus-infected cells: cis and trans effects on the Gag precursor assembly pathway. Journal of Virology 69:365–375
    [Google Scholar]
  11. Cohen E. A., Subbramanian R. A., Göttlinger H. G. 1996; Role of auxiliary proteins in retroviral morphogenesis. Current Topics in Microbiology and Immunology 214:219–235
    [Google Scholar]
  12. Courcoul M., Patience C., Rey F., Blanc D., Harmache A., Sire J., Vigne R., Spire B. 1995; Peripheral blood mononuclear cells produce normal amounts of defective Vif human immunodeficiency virus type 1 particles which are restricted for the preretrotranscription steps. Journal of Virology 69:2068–2074
    [Google Scholar]
  13. Dettenhofer M., Yu X.-F. 1999; Highly purified human immunodeficiency virus type 1 reveals a virtual absence of Vif in virions. Journal of Virology 73:1460–1467
    [Google Scholar]
  14. Dettenhofer M., Cen S., Carlson B. A., Kleiman L., Yu X.-F. 2000; Association of human immunodeficiency virus type 1 Vif with RNA and its role in reverse transcription. Journal of Virology 74:8938–8945
    [Google Scholar]
  15. Fouchier R. A. M., Simon J. H. M., Jaffe A. B., Malim M. H. 1996; Human immunodeficiency virus type 1 Vif does not influence expression or virion incorporation of gag -, pol -, and env -encoded proteins. Journal of Virology 70:8263–8269
    [Google Scholar]
  16. Friedler A., Blumenzweig I., Baraz L., Steinitz M., Kotler M., Gilon C. 1999; Peptides derived from HIV-1 Vif: a non-substrate based novel type of HIV-1 protease inhibitors. Journal of Molecular Biology 287:93–101
    [Google Scholar]
  17. Gabuzda D. H., Lawrence K., Langhoff E., Terwilliger E., Dorfman T., Haseltine W. A., Sodroski J. 1992; Role of Vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. Journal of Virology 66:6489–6495
    [Google Scholar]
  18. Gabuzda D. H., Li H., Lawrence K., Vasir B. S., Crawford K., Langhoff E. 1994; Essential role of vif in establishing productive HIV-1 infection in peripheral blood T lymphocytes and monocytes/macrophages. Journal of Acquired Immunodeficiency Syndromes 7:908–915
    [Google Scholar]
  19. Gay B., Tournier J., Chazal N., Carrière C., Boulanger P. 1998; Morphopoietic determinants of HIV Gag particles assembled in baculovirus-infected cells. Virology 247:160–169
    [Google Scholar]
  20. Goncalves J., Jallepalli P., Gabuzda D. H. 1994; Subcellular localization of the Vif protein of human immunodeficiency virus type 1. Journal of Virology 68:704–712
    [Google Scholar]
  21. Goncalves J., Shi B., Yang X., Gabuzda D. 1995; Biological activity of human immunodeficiency virus type 1 Vif requires membrane targeting by C-terminal basic domains. Journal of Virology 69:7196–7204
    [Google Scholar]
  22. Goncalves J., Korin Y., Zack J., Gabuzda D. 1996; Role of Vif in human immunodeficiency virus type 1 reverse transcription. Journal of Virology 70:8701–8709
    [Google Scholar]
  23. Göttlinger H. G., Sodroski J. G., Haseltine W. A. 1989; Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences, USA 86:5781–5785
    [Google Scholar]
  24. Gross I., Hohenberg H., Wilk T., Wiegers K., Grättinger M., Müller B., Fuller S., Kräusslich H.-G. 2000; A conformational switch controlling HIV-1 morphogenesis. EMBO Journal 19:103–113
    [Google Scholar]
  25. Hassaïne G., Courcoul M., Bessou G., Barthalay Y., Picard C., Olive D., Collette Y., Vigne R., Decroly E. 2001; The tyrosine kinase Hck is an inhibitor of HIV-1 replication counteracted by the viral Vif protein. Journal of Biological Chemistry 276:16885–16893
    [Google Scholar]
  26. Henderson L. E., Bowers M. A., Sowder R. C.II., Serabyn S. A., Johnson D. G., Bess J. W. Jr, Arthur L. O., Bryant D. K., Fenselau C. 1992; Gag proteins of the highly replicative MN strain of human immunodeficiency virus type 1: posttranslational modifications, proteolytic processing, and complete amino acid sequences. Journal of Virology 66:1856–1865
    [Google Scholar]
  27. Höglund S., Öhagen A., Lawrence K., Gabuzda D. 1994; Role of vif during packaging of the core of HIV-1. Virology 201:349–355
    [Google Scholar]
  28. Hong S. S., Boulanger P. 1993; Assembly-defective point mutants of human immunodeficiency virus type 1 Gag precursor phenotypically expressed in recombinant baculovirus-infected cells. Journal of Virology 67:2787–2798
    [Google Scholar]
  29. Hughes B. P., Booth T. F., Belyaev A. S., McIlroy D., Jowett J., Roy P. 1993; Morphogenic capabilities of human immunodeficiency virus type 1 gag and gag-pol proteins in insect cells. Virology 193:242–255
    [Google Scholar]
  30. Huvent I., Hong S. S., Fournier C., Gay B., Tournier J., Carrière C., Courcoul M., Vigne R., Spire B., Boulanger P. 1998; Interaction and co-encapsidation of human immunodeficiency virus type 1 Gag and Vif recombinant proteins. Journal of General Virology 79:1069–1081
    [Google Scholar]
  31. Karayan L., Gay B., Gerfaux J., Boulanger P. A. 1994; Oligomerization of recombinant penton base of adenovirus type 2 and its assembly with fiber in baculovirus-infected cells. Virology 202:782–795
    [Google Scholar]
  32. Karczewski M. K., Strebel K. 1996; Cytoskeleton association and virion incorporation of the human immunodeficiency virus type 1 Vif protein. Journal of Virology 70:494–507
    [Google Scholar]
  33. Kotler M., Simm M., Zhao Y. S., Sova P., Chao W., Ohnona S.-F., Roller R., Krachmarov C., Potash M. J., Volsky D. J. 1997; Human immunodeficiency virus type 1 (HIV-1) protein Vif inhibits the activity of HIV-1 protease in bacteria and in vitro. Journal of Virology 71:5774–5781
    [Google Scholar]
  34. Layne S. P., Merges M. J., Dembo M., Spouge J. L., Conley S. R., Moore J. P., Raina J. L., Renz H., Gelderblom H. R., Nara P. L. 1992; Factors underlying spontaneous inactivation and susceptibility to neutralization of human immunodeficiency virus. Virology 189:695–714
    [Google Scholar]
  35. Liu H., Wu X., Newman M., Shaw G. M., Hahn B. H., Kappes J. C. 1995; The Vif protein of human and simian immunodeficiency viruses is packaged into virions and associates with viral core structures. Journal of Virology 69:7630–7638
    [Google Scholar]
  36. Madani N., Kabat D. 1998; An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. Journal of Virology 72:10251–10255
    [Google Scholar]
  37. Mervis R. J., Ahmad N., Lillehoj E. P., Raum M. G., Salazar F. H. R., Chan H. W., Venkatesan S. 1988; The gag gene products of human immunodeficiency virus type 1: alignment within the gag open reading frame, identification of posttranslational modifications, and evidence for alternative Gag precursors. Journal of Virology 62:3993–4002
    [Google Scholar]
  38. Oberste M. S., Gonda M. A. 1992; Conservation of amino acid sequence motifs in lentivirus Vif proteins. Virus Genes 6:95–102
    [Google Scholar]
  39. Ochsenbauer C., Wilk T., Bosch V. 1997; Analysis of vif -defective human immunodeficiency virus type 1 (HIV-1) virions synthesized in ‘non-permissive’ T lymphoid cells stably infected with selectable HIV-1. Journal of General Virology 78:627–635
    [Google Scholar]
  40. Öhagen A., Gabuzda D. 2000; Role of Vif in stability of the human immunodeficiency virus type 1 core. Journal of Virology 74:11055–11066
    [Google Scholar]
  41. Pettit S. C., Moody M. D., Wehbie R. S., Kaplan A. H., Nantermet P. V., Klein C. A., Swanstrom R. 1994; The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. Journal of Virology 68:8017–8027
    [Google Scholar]
  42. Potash M. J., Bentsman G., Muir T., Krachmarov C., Sova P., Volsky D. J. 1998; Peptide inhibitors of HIV-1 protease and viral infection of peripheral blood lymphocytes based on HIV-1 Vif. Proceedings of the National Academy of Sciences, USA 95:13865–13868
    [Google Scholar]
  43. Royer M., Cerutti M., Gay B., Hong S. S., Devauchelle G., Boulanger P. 1991; Functional domains of HIV-1 gag-polyprotein expressed in baculovirus-infected cells. Virology 184:417–422
    [Google Scholar]
  44. Royer M., Hong S. S., Gay B., Cerutti M., Boulanger P. 1992; Expression and extracellular release of human immunodeficiency virus type 1 Gag precursors by recombinant baculovirus-infected cells. Journal of Virology 66:3230–3235
    [Google Scholar]
  45. Royer M., Bardy M., Gay B., Tournier J., Boulanger P. 1997; Proteolytic activity in vivo and encapsidation of recombinant human immunodeficiency virus type 1 proteinase expressed in baculovirus-infected cells. Journal of General Virology 78:131–142
    [Google Scholar]
  46. Simm M., Shahabuddin M., Chao W., Allan J. S., Volsky D. J. 1995; Aberrant Gag protein composition of a human immunodeficiency virus type 1 vif mutant produced in primary lymphocytes. Journal of Virology 69:4582–4586
    [Google Scholar]
  47. Simon J. H. M., Fouchier R. A. M., Southerling T. E., Guerra C. B., Grant C. K., Malim M. H. 1997; The Vif and Gag proteins of human immunodeficiency virus type 1 colocalize in infected human T cells. Journal of Virology 71:5259–5267
    [Google Scholar]
  48. Simon J. H. M., Gaddis N. C., Fouchier R. A. M., Malim M. H. 1998a; Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nature Medicine 4:1397–1400
    [Google Scholar]
  49. Simon J. H. M., Miller D. L., Fouchier R. A. M., Soares M. A., Peden K. W., Malim M. H. 1998b; The regulation of primate immunodeficiency virus infectivity by Vif is cell species restricted: a role for Vif in determining virus host range and cross-species transmission. EMBO Journal 17:1259–1267
    [Google Scholar]
  50. Simon J. H. M., Miller D. L., Fouchier R. A. M., Malim M. H. 1998c; Virion incorporation of human immunodeficiency virus type 1 Vif is determined by intracellular expression levels and may not be necessary for function. Virology 248:182–187
    [Google Scholar]
  51. Simon J. H. M., Carpenter E. A., Fouchier R. A. M., Malim M. H. 1999; Vif and the p55Gag polyprotein of human immunodeficiency virus type 1 are present in colocalizing membrane-free cytoplasmic complexes. Journal of Virology 73:2667–2674
    [Google Scholar]
  52. Sova P., Volsky D. J. 1993; Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1. Journal of Virology 67:6322–6326
    [Google Scholar]
  53. Sova P., van Ranst M., Gupta P., Balachandran R., Chao W., Itescu S., McKinley G., Volsky D. J. 1995; Conservation of an intact human immunodeficiency virus type 1 vif gene in vitro and in vivo. Journal of Virology 69:2557–2564
    [Google Scholar]
  54. Sova P., Volsky D. J., Wang L., Chao W. 2001; Vif is largely absent from human immunodeficiency virus type 1 mature virions and associates mainly with viral particles containing unprocessed Gag. Journal of Virology 75:5504–5517
    [Google Scholar]
  55. Spire B., Sire J., Zachar V., Rey F., Barré-Sinoussi F., Galibert F., Hampe A., Chermann J. C. 1989; Nucleotide sequence of HIV1-NDK: a highly cytopathic strain of the human immunodeficiency virus. Gene 81:275–284
    [Google Scholar]
  56. Tanchou V., Delaunay T., de Rocquigny H., Bodeus M., Darlix J. L., Roques B., Benarous R. 1994; Monoclonal antibody-mediated inhibition of RNA binding and annealing activities of HIV type 1 nucleocapsid protein. AIDS Research and Human Retroviruses 10:983–993
    [Google Scholar]
  57. Trono D. 1995; HIV accessory proteins: leading roles for the supporting cast. Cell 82:189–192
    [Google Scholar]
  58. Valverde V., Lemay P., Masson J.-M., Gay B., Boulanger P. 1992; Autoprocessing of the human immunodeficiency virus type 1 protease precursor expressed in Escherichia coli from a synthetic gene. Journal of General Virology 73:639–651
    [Google Scholar]
  59. Veronese F. D. M., Rahman R., Copeland T. D., Oroszlan S., Gallo R. C., Sarngadharan M. G. 1987; Immunological and chemical analysis of p6, the carboxyl-terminal fragment of HIV P15. AIDS Research and Human Retroviruses 3:253–264
    [Google Scholar]
  60. von Schwedler U., Song J., Aiken C., Trono D. 1993; Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. Journal of Virology 67:4945–4955
    [Google Scholar]
  61. Wieland U., Hartmann J., Suhr H., Salzberger B., Eggers H. J., Kühn J. E. 1994; In vivo genetic variability of the HIV-1 vif gene. Virology 203:43–51
    [Google Scholar]
  62. Wilk T., Gross I., Gowen B. E., Rutten T., de Haas F., Welker R., Kräusslich H.-G., Boulanger P., Fuller S. D. 2001; Organization of immature human immunodeficiency virus type 1. Journal of Virology 75:759–771
    [Google Scholar]
  63. Yang X., Goncalves J., Gabuzda D. 1996; Phosphorylation of Vif and its role in HIV-1 replication. Journal of Biological Chemistry 271:10121–10129
    [Google Scholar]
  64. Yang S., Sun Y., Zhang H. 2001; The multimerization of human immunodeficiency virus type 1 Vif protein: a requirement for Vif function in the viral life cycle. Journal of Biological Chemistry 276:4889–4893
    [Google Scholar]
  65. Zhang H., Pomerantz R. J., Dornadula G., Sun Y. 2000; Human immunodeficiency virus type 1 Vif protein is an integral component of an mRNP complex of viral RNA and could be involved in the viral RNA folding and packaging process. Journal of Virology 74:8252–8261
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-11-2719
Loading
/content/journal/jgv/10.1099/0022-1317-82-11-2719
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error