1887

Abstract

Various functions of the cell-to-cell movement protein (MP) of (GRV) were analysed. The GRV ORF4-encoded protein was shown by immunofluorescence microscopy to generate tubular structures that protrude from the surface of the protoplast. The protein encoded by ORF4 was assessed also for RNA-binding properties. This protein was tagged at its C terminus with six histidine residues, produced in using an expression vector and purified by affinity chromatography. Gel retardation analysis demonstrated that, in contrast to many other viral MPs, including the 3a MP of (CMV), the ORF4-encoded protein bound non-cooperatively to viral ssRNA and formed complexes of low protein:RNA ratios. Competition binding experiments showed that the ORF4-encoded protein bound to both ssRNA and ssDNA without sequence specificity, but did not bind to dsDNA. UV cross-linking and nitrocellulose membrane-retention assays confirmed that both the GRV and the CMV MPs formed complexes with ssRNA and that these complexes showed similar stability in NaCl. Probing the MP–RNA complexes by atomic force microscopy demonstrated that the ORF4-encoded protein bound RNA incompletely, leaving protein-free RNA segments of varying length, while the CMV 3a protein formed highly packed complexes. The significance of the two properties of limited RNA binding and tubule formation of the umbraviral MP is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-10-2579
2001-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/10/0822579a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-10-2579&mimeType=html&fmt=ahah

References

  1. Atkins D., Hull R., Wells B., Roberts K., Moore P., Beachy R. N. 1991; The tobacco mosaic virus 30K movement protein in transgenic plants is localized to plasmodesmata. Journal of General Virology 72:209–212
    [Google Scholar]
  2. Blackman L. M., Boevink P., Santa Cruz S., Palukaitis P., Oparka K. J. 1998; The movement protein of cucumber mosaic virus traffics into sieve elements in minor veins of Nicotiana clevelandii. Plant Cell 10:525–537
    [Google Scholar]
  3. Boccard F., Baulcombe D. 1993; Mutational analysis of cis -acting sequences and gene function in RNA3 of cucumber mosaic virus. Virology 193:563–578
    [Google Scholar]
  4. Boyko V., Ferralli J., Ashby J., Schellenbaum P., Heinlein M. 2000; Function of microtubules in intercellular transport of plant virus RNA. Nature Cell Biology 2:826–832
    [Google Scholar]
  5. Bustamante C., Rivetti C. 1996; Visualizing protein–nucleic acid interactions on a large scale with the scanning force microscope. Annual Review of Biophysics and Biomolecular Structure 25:395–429
    [Google Scholar]
  6. Canto T., Palukaitis P. 1999; Are tubules generated by the 3a protein necessary for cucumber mosaic virus movement?. Molecular Plant–Microbe Interactions 12:985–993
    [Google Scholar]
  7. Canto T., Prior D. A. M., Hellwald K.-H., Oparka K. J., Palukaitis P. 1997; Characterization of cucumber mosaic virus. IV. Movement protein and coat protein are both essential for cell-to-cell movement of cucumber mosaic virus. Virology 237:237–248
    [Google Scholar]
  8. Carrington J. C., Kasschau K. D., Mahajan S. K., Schaad M. C. 1996; Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8:1669–1681
    [Google Scholar]
  9. Citovsky V., Knorr D., Schuster G., Zambryski P. 1990; The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60:637–648
    [Google Scholar]
  10. Citovsky V., Wong M. L., Shaw A. L., Prasad B. M. V., Zambryski P. 1992; Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell 4:397–411
    [Google Scholar]
  11. Ding B., Li Q., Nguyen L., Palukaitis P., Lucas W. J. 1995; Cucumber mosaic virus 3a protein potentiates cell-to-cell trafficking of CMV RNA in tobacco plants . Virology 207:345–353
    [Google Scholar]
  12. Donald R. G. K., Lawrence D. M., Jackson A. O. 1997; The barley stripe mosaic virus 58K-kilodalton βb protein is a multifunctional RNA binding protein. Journal of Virology 71:1538–1546
    [Google Scholar]
  13. Drygin Yu. F., Bordunova O. A., Gallyamov M. O., Yaminsky I. V. 1998; Atomic force microscopy examination of tobacco mosaic virus and virion RNA. FEBS Letters 425:217–221
    [Google Scholar]
  14. Eggen R., Verver J., Wellink J., de Jong A., Goldbach R., Van Kammen A. 1989; Improvements of the infectivity in vitro transcripts from cloned cowpea mosaic virus cDNA: impact of terminal nucleotide sequences. Virology 173:447–455
    [Google Scholar]
  15. Fritz M., Radmacher M., Cleveland J. P., Allersma M. W., Stewart R. J., Gieselman R., Janmey P., Schmidt C. F., Hansma P. K. 1995; Imaging globular and filamentous proteins in physiological buffer solutions with tapping mode atomic force microscopy . Langmuir 11:3529–3535
    [Google Scholar]
  16. Fritz J., Anselmetti D., Jarchow J., Fernandez-Busquets X. 1997; Probing single biomolecules with atomic force microscopy. Journal of Structural Biology 119:165–171
    [Google Scholar]
  17. Fujita M., Mise K., Kajiura Y., Dohi K., Furusawa I. 1998; Nucleic acid-binding properties and subcellular localization of the 3a protein of brome mosaic bromovirus. Journal of General Virology 79:1273–1280
    [Google Scholar]
  18. Gal-On A., Kaplan I. B., Roossinck M. J., Palukaitis P. 1994; The kinetics of infection of zucchini squash by cucumber mosaic virus indicate a function of RNA1 in virus movement. Virology 205:280–289
    [Google Scholar]
  19. Giesman-Cookmeyer D., Lommel S. A. 1993; Alanine scanning mutagenesis of a plant virus movement protein identifies three functional domains. Plant Cell 5:973–982
    [Google Scholar]
  20. Hansma H. G., Kim K. J., Laney D. E., Garcia R. A., Argaman M., Allen M. J., Parsons S. M. 1997; Properties of biomolecules measured from atomic force microscope images: a review. Journal of Structural Biology 119:99–108
    [Google Scholar]
  21. Heinlein M., Epel B. L., Padgett H. S., Beachy R. N. 1995; Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270:1983–1985
    [Google Scholar]
  22. Jansen K. A., Wolfs C. J., Lohuis H., Goldbach R. W., Verduin B. J. 1998; Characterisation of the brome mosaic virus movement protein expressed in E. coli. Virology 242:387–394
    [Google Scholar]
  23. Kaplan I. B., Zhang L., Palukaitis P. 1998; Characterization of cucumber mosaic virus. V. Cell-to-cell movement requires capsid protein but not virions. Virology 246:221–231
    [Google Scholar]
  24. Karpova O. V., Ivanov K. I., Rodionova N. P., Dorokhov Yu. L., Atabekov J. G. 1997; Nontranslatability and dissimilar behaviour in plants and protoplasts of viral RNA and movement protein complexes formed in vitro. Virology 230:11–21
    [Google Scholar]
  25. Karpova O. V., Rodionova N. P., Ivanov K. I., Kozlovsky S. V., Dorokhov Yu. L., Atabekov J. G. 1999; Phosphorylation of tobacco mosaic virus movement protein abolishes its translation repressing ability. Virology 261:20–24
    [Google Scholar]
  26. Kasteel D. T. J., van der Wel N. N., Jansen K. A. J., Goldbach R. W., van Lent J. W. M. 1997a; Tubule-forming capacity of the movement proteins of alfalfa mosaic virus and brome mosaic virus. Journal of General Virology 78:2089–2093
    [Google Scholar]
  27. Kasteel D. T. J., Wellink J., Goldbach R. W., van Lent J. W. M. 1997b; Isolation and characterization of tubular structures of cowpea mosaic virus. Journal of General Virology 78:3167–3170
    [Google Scholar]
  28. Keller D. J. 1991; Reconstruction of STM and AFM images distorted by finite-size tips. Surfactant Science Series 253:353–364
    [Google Scholar]
  29. Kikkert M., van Poelwijk F., Storms M., Kassies W., Bloksma H., van Lent J., Kormelink R., Goldbach R. W. 1997; A protoplast system for studying tomato spotted wilt virus infection. Journal of General Virology 78:1755–1763
    [Google Scholar]
  30. Kiselyova O. I., Yaminsky I. V., Karger E. M., Frolova O. Yu., Dorokhov Y. L., Atabekov J. G. 2001; Visualization by atomic force microscopy of tobacco mosaic virus movement protein–RNA complexes formed in vitro. Journal of General Virology 82:1503–1508
    [Google Scholar]
  31. Klinov D. V., Lagutina I. V., Prokhorov V. V., Neretina T., Khil P. P., Lebedev Yu. B., Cherny D. I., Demin V. V., Sverdlov E. D. 1998; High resolution mapping DNAs by R-loop atomic force microscopy. Nucleic Acids Research 26:4603–4610
    [Google Scholar]
  32. Li Q., Palukaitis P. 1996; Comparison of the nucleic acid- and NTP-binding properties of the movement protein of cucumber mosaic cucumovirus and tobacco mosaic tobamovirus. Virology 216:71–79
    [Google Scholar]
  33. Lucas W. J. 1995; Plasmodesmata: intercellular channels for macromolecular transport in plants. Current Opinion in Cell Biology 7:637–680
    [Google Scholar]
  34. Lyubchenko Y. L., Oden P. I., Lampner D., Lindsay S. M., Dunker K. A. 1993a; Atomic force microscopy of DNA and bacteriophage in air, water and propanol: the role of adhesion forces. Nucleic Acids Research 21:1117–1123
    [Google Scholar]
  35. Lyubchenko Y., Shlyakhtenko L., Harrington R., Oden P., Lindsay S. 1993b; Atomic force microscopy of long DNA: imaging in air and under water. Proceedings of the National Academy of Sciences, USA 90:2137–2140
    [Google Scholar]
  36. Lyubchenko Y. L., Jacobs B. L., Lindsay S. M., Stasiak A. 1995; Atomic force microscopy of nucleoprotein complexes. Scanning Microscopy 9:705–727
    [Google Scholar]
  37. McLean B. G., Zupan J., Zambryski P. 1995; Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell 7:2101–2114
    [Google Scholar]
  38. Mayo M., Ryabov E., Fraser G., Taliansky M. 2000; Mechanical transmission of Potato leafroll virus. Journal of General Virology 81:2791–2795
    [Google Scholar]
  39. Murant A. F., Roberts I. M., Goold R. A. 1973; Cytopathological changes and extractable infectivity in Nicotiana clevelandii leaves infected with carrot mottle virus . Journal of General Virology 21:269–283
    [Google Scholar]
  40. Perbal M. C., Thomas C. L., Maule A. 1993; Cauliflower mosaic virus gene I product (P1) forms tubular structures which extend from the surface of infected protoplasts. Virology 195:281–285
    [Google Scholar]
  41. Power J. B., Chapman J. V. 1985; Isolation, culture and genetic manipulation of plant protoplasts. In Plant Cell Culture pp 37–66 Edited by Dixon R. A. Oxford: ICR Press;
    [Google Scholar]
  42. Rizzo T. M., Palukaitis P. 1990; Construction of full-length cDNA clones of cucumber mosaic virus RNAs 1, 2, and 3: generation of infectious RNA transcripts. Molecular and General Genetics 222:249–256
    [Google Scholar]
  43. Ryabov E. V., Oparka K. J., Santa Cruz S., Robinson D. J., Taliansky M. E. 1998; Intracellular location of two groundnut rosette umbravirus proteins delivered by PVX and TMV vectors. Virology 242:303–313
    [Google Scholar]
  44. Ryabov E. V., Robinson D. J., Taliansky M. E. 1999a; A plant virus encoded protein facilitates long distance movement of heterologous viral RNA. Proceedings of the National Academy of Sciences, USA 96:1212–1217
    [Google Scholar]
  45. Ryabov E. V., Roberts I. M., Palukaitis P., Taliansky M. E. 1999b; Host-specific cell-to-cell and long-distance movements of cucumber mosaic virus are facilitated by the movement protein of groundnut rosette virus. Virology 260:98–108
    [Google Scholar]
  46. Schoumacher F., Erny C., Berna A., Godefroy-Colburn T., Stussi-Garaud C. 1992; Nucleic acid binding properties of the alfalfa mosaic virus movement protein produced in yeast. Virology 188:896–899
    [Google Scholar]
  47. Smith B. L., Gallie D. R., Le H., Hansma P. K. 1997; Visualization of poly(A)-binding protein complex formation with poly(A) RNA using atomic force microscopy. Journal of Structural Biology 119:109–117
    [Google Scholar]
  48. Storms M., Kormelink R., Peters D., van Lent J., Goldbach R. W. 1995; The nonstructural protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214:485–493
    [Google Scholar]
  49. Suzuki M., Kuwata S., Kataoka J., Masuta C., Nitta N., Takanami Y. 1991; Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcriptional system. Virology 183:106–113
    [Google Scholar]
  50. Taliansky M. E., Robinson D. J., Murant A. F. 1996; Complete nucleotide sequence and genome organization of the RNA genome of groundnut rosette umbravirus. Journal of General Virology 77:2335–2345
    [Google Scholar]
  51. Taliansky M. E., Robinson D. J., Murant A. F. 2000; Groundnut rosette disease virus complex: biology and molecular biology. Advances in Virus Research 55:357–402
    [Google Scholar]
  52. Thomas C. L., Maule A. G. 1995; Identification of the cauliflower mosaic virus movement protein RNA-binding domain. Virology 206:1145–1149
    [Google Scholar]
  53. Tomenius K., Clapham D., Meshi T. 1987; Localization by immunogold cytochemistry of the virus-encoded 30K protein in plasmodesmata of leaves infected with tobacco mosaic virus. Virology 160:363–371
    [Google Scholar]
  54. van Lent J., Wellink J., Goldbach R. W. 1990; Evidence for the involvement of the 58K and 48K proteins in the intercellular movement of cowpea mosaic virus. Journal of General Virology 71:219–224
    [Google Scholar]
  55. van Lent J., Storms M., van der Meer F., Wellink J., Goldbach R. W. 1991; Tubular structures involved in movement of cowpea mosaic virus are also formed in infected cowpea protoplasts. Journal of General Virology 72:2615–2623
    [Google Scholar]
  56. Vaquero C., Sanz A. I., Serra M. T., Garcia-Luque I. 1996; Accumulation kinetics of CMV RNA 3-encoded proteins and subcellular localization of the 3a protein in infected and transgenic tobacco plants . Archives of. Virology 141:987–999
    [Google Scholar]
  57. Vaquero C., Liao Y.-C., Nähring J., Fischer R. 1997; Mapping of the RNA-binding domain of the cucumber mosaic virus movement protein. Journal of General Virology 78:2095–2099
    [Google Scholar]
  58. Wolf S., Deom C. M., Beachy R. N., Lucas W. J. 1989; Movement protein of tobacco mosaic virus modifies plasmodesmata size exclusion limit. Science 246:377–379
    [Google Scholar]
  59. Zheng H., Wang G., Zhang L. 1997; Alfalfa mosaic virus movement protein induces tubules in plant protoplasts. Molecular Plant–Microbe Interactions 10:1010–1014
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-10-2579
Loading
/content/journal/jgv/10.1099/0022-1317-82-10-2579
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error