1887

Abstract

The 63 kDa ‘63K’ movement protein encoded by the triple gene block of poa semilatent virus (PSLV) comprises the C-terminal NTPase/helicase domain and the N-terminal extension domain, which contains two positively charged sequence motifs, A and B. In this study, the RNA-binding properties of PSLV 63K and its mutants were analysed. Membrane-immobilized 63K and N-63K (isolated N-terminal extension domain) bound RNA at high NaCl concentrations. In contrast, C-63K (isolated NTPase/helicase domain) was able to bind RNA only at NaCl concentrations of up to 50 mM. In gel-shift assays, C-63K bound RNA to form complexes that were unable to enter an agarose gel, whereas complexes formed by N-63K could enter the gel. Full-length 63K formed both types of complexes. Visualization of the RNA–protein complexes formed by 63K, N-63K and C-63K by atomic force microscopy demonstrated that each complex had a different shape. Collectively, these data indicate that 63K has two distinct RNA-binding activities associated with the NTPase/helicase domain and the N-terminal extension domain. Mutations in either of the positively charged sequence motifs A and B had little effect on the RNA binding of the N-terminal extension domain, whereas mutations in both motifs together inhibited RNA binding. Hybrid viruses with mutations in motifs A and B were able to infect inoculated leaves of plants, but were unable to move systemically to uninoculated leaves, suggesting that the RNA-binding activity of the N-terminal extension domain of PSLV 63K is associated with virus long-distance movement.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-10-2569
2001-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/10/0822569a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-10-2569&mimeType=html&fmt=ahah

References

  1. Angell S. M., Davies C., Baulcombe D. C. 1996; Cell-to-cell movement of potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii . Virology 216:197–201
    [Google Scholar]
  2. Atabekov J. G., Dorokhov Yu. L. 1984; Plant virus-specific transport function and resistance of plants to viruses. Advances in Virus Research 29:313–364
    [Google Scholar]
  3. Atabekov J. G., Rodionova N. P., Karpova O. V., Kozlovsky S. V., Poljakov V. Y. 2000; The movement protein-triggered in situ conversion of potato virus X virion RNA from a nontranslatable into a translatable form. Virology 271:259–263
    [Google Scholar]
  4. Beck D. L., Guilford P. J., Voot D. M., Andersen M. T., Forster R. L. 1991; Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology 183:695–702
    [Google Scholar]
  5. Binnig G., Quate C. F., Gerber Ch. 1986; Atomic force microscope. Physical Review Letters 56:930–933
    [Google Scholar]
  6. Bleykasten C., Gilmer D., Guilley H., Richards K. E., Jonard G. 1996; Beet necrotic yellow vein virus 42 kDa triple gene block protein binds nucleic acid in vitro . Journal of General Virology 77:889–897
    [Google Scholar]
  7. Brakke M. K., Ball E. M., Langenberg W. G. 1988; A non-capsid protein associated with unencapsidated virus RNA in barley infected with barley stripe mosaic virus. Journal of General Virology 69:481–491
    [Google Scholar]
  8. Carrington J. C., Kasschau K. D., Mahajan S. K., Schaad M. C. 1996; Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8:1669–1681
    [Google Scholar]
  9. Citovsky V., Zambryski P. 1991; How do plant virus nucleic acids move through intercellular connections?. Bioessays 13:373–379
    [Google Scholar]
  10. Citovsky V., Zambryski P. 1993; Transport of nucleic acids through membrane channels: snaking through small holes. Annual Review of Microbiology 47:167–197
    [Google Scholar]
  11. Citovsky V., Wong M. L., Shaw A. L., Prasad B. V., Zambryski P. 1992; Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell 4:397–411
    [Google Scholar]
  12. Daros J. A., Carrington J. C. 1997; RNA-binding activity of NIa proteinase of tobacco etch potyvirus. Virology 237:327–336
    [Google Scholar]
  13. Ding B. 1998; Intercellular protein trafficking through plasmodesmata. Plant Molecular Biology 38:279–310
    [Google Scholar]
  14. Donald R. G., Lawrence D. M., Jackson A. O. 1997; The barley stripe mosaic virus 58-kilodalton βb protein is a multifunctional RNA-binding protein. Journal of Virology 71:1538–1546
    [Google Scholar]
  15. Dorokhov Yu. L., Aleksandrova N. M., Miroshnichenko N. A., Rupasov V. V., Atabekov J. G. 1984; Virus-specific informosomes in tobacco cells infected with tobacco mosaic virus. Molekuliarnaia Biologiia 18:83–91 (in Russian
    [Google Scholar]
  16. Dubochet J., Ducommun M., Zollinger M., Kellenberger E. 1971; A new preparation method for dark-field electron microscopy of biomacromolecules. Journal of Ultrastructure Research 35:147–167
    [Google Scholar]
  17. Erhardt M., Morant M., Ritzenthaler C., Stussi-Garaud C., Guilley H., Richards K., Jonard G., Bouzoubaa S., Gilmer D. 2000; P42 movement protein of beet necrotic yellow vein virus is targeted by the movement proteins P13 and P15 to punctate bodies associated with plasmodesmata. Molecular Plant–Microbe Interactions 13:520–528
    [Google Scholar]
  18. Evdokimova V. M., Wei C. L., Sitikov A. S., Simonenko P. N., Lazarev O. A., Vasilenko K. S., Ustinov V. A., Hershey J. W., Ovchinnikov L. P. 1995; The major protein of messenger ribonucleoprotein particles in somatic cells is a member of the Y-box binding transcription factor family. Journal of Biological Chemistry 270:3186–3192
    [Google Scholar]
  19. Evdokimova V. M., Kovrigina E. A., Nashchekin D. V., Davydova E. K., Hershey J. W. B., Ovchinnikov L. P. 1998; The major core protein of messenger ribonucleoprotein particles (p50) promotes initiation of protein biosynthesis in vitro . Journal of Biological Chemistry 273:3574–3581
    [Google Scholar]
  20. Fernandez A., Garcia J. A. 1996; The RNA helicase CI from plum pox potyvirus has two regions involved in binding to RNA. FEBS Letters 388:206–210
    [Google Scholar]
  21. Gilmer D., Bouzoubaa S., Hehn A., Guilley H., Richards K., Jonard G. 1992; Efficient cell-to-cell movement of beet necrotic yellow vein virus requires 3′ proximal genes located on RNA 2. Virology 189:40–47
    [Google Scholar]
  22. Gorbalenya A. E., Koonin E. V. 1989; Viral proteins containing the purine NTP-binding sequence pattern. Nucleic Acids Research 17:8413–8440
    [Google Scholar]
  23. Gorbalenya A. E., Blinov V. M., Donchenko A. P., Koonin E. V. 1989; An NTP-binding motif is the most conserved sequence in a highly diverged monophyletic group of proteins involved in positive strand RNA viral replication. Journal of Molecular Evolution 28:256–268
    [Google Scholar]
  24. Herzog E., Hemmer O., Hauser S., Meyer G., Bouzoubaa S., Fritsch C. 1998; Identification of genes involved in replication and movement of peanut clump virus. Virology 248:312–322
    [Google Scholar]
  25. Jansen K. A., Wolfs C. J., Lohuis H., Goldbach R. W., Verduin B. J. 1998; Characterization of the brome mosaic virus movement protein expressed in E. coli. Virology 242:387–394
    [Google Scholar]
  26. Kalinina N. O., Fedorkin O. N., Samuilova O. V., Maiss E., Korpela T., Morozov S. Yu., Atabekov J. G. 1996; Expression and biochemical analyses of the recombinant potato virus X 25K movement protein. FEBS Letters 397:75–78
    [Google Scholar]
  27. Kiselyova O. I., Yaminsky I. V., Karger E. M., Frolova O. Yu., Dorokhov Yu. L., Atabekov J. G. 2001; Visualization of TMV movement protein-RNA complexes formed in vitro by atomic force microscopy. Journal of General Virology 82:1503–1508
    [Google Scholar]
  28. Klinov D. V., Lagutina I. V., Prokhorov V. V., Neretina T. V., Khil P. P., Lebedev Yu. B., Cherny D. I., Demin V. V., Sverdlov E. D. 1998; High resolution mapping DNAs by R-loop atomic force microscopy. Nucleic Acids Research 26:4603–4610
    [Google Scholar]
  29. Lazarowitz S. G., Beachy R. N. 1999; Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11:535–548
    [Google Scholar]
  30. Li Q., Palukaitis P. 1996; Comparison of the nucleic acid- and NTP-binding properties of the movement protein of cucumber mosaic cucumovirus and tobacco mosaic tobamovirus. Virology 216:71–79
    [Google Scholar]
  31. Lough T. J., Shash K., Xoconostle-Cazares B., Hofstra K. R., Beck D. L., Balmori E., Forster R. L., Lucas W. J. 1998; Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Molecular Plant–Microbe Interactions 11:801–814
    [Google Scholar]
  32. Lough T. J., Netzler N. E., Emerson S. J., Sutherland P., Carr F., Beck D. L., Lucas W. J., Forster R. L. 2000; Cell-to-cell movement of potexviruses: evidence for a ribonucleicprotein complex involving the coat protein and first triple gene block protein. Molecular Plant–Microbe Interactions 13:962–974
    [Google Scholar]
  33. Lucas W. J. 1999; Plasmodesmata and the cell-to-cell transport of proteins and nucleoprotein complexes. Journal of Experimental Botany 50:979–987
    [Google Scholar]
  34. Marcos J. F., Vilar M., Perez-Paya E., Pallas V. 1999; In vivo detection, RNA-binding properties and characterization of the RNA-binding domain of the p7 putative movement protein from carnation mottle carmovirus (CarMV). Virology 255:354–365
    [Google Scholar]
  35. Morozov S. Yu., Solovyev A. G. 1999; Genome organization in RNA viruses. In Molecular Biology of Plant Viruses pp 47–98 Edited by Mandahar C. L. Dordrecht: Kluwer;
    [Google Scholar]
  36. Morozov S. Yu., Dolja V. V., Atabekov J. G. 1989; Probable reassortment of genomic elements among elongated RNA-containing plant viruses. Journal of Molecular Evolution 29:52–62
    [Google Scholar]
  37. Morozov S. Yu., Solovyev A. G., Kalinina N. O., Fedorkin O. N., Samuilova O. V., Schiemann J., Atabekov J. G. 1999; Evidence for two nonoverlapping functional domains in the potato virus X 25K movement protein. Virology 260:55–63
    [Google Scholar]
  38. Osman T. A., Hayes R. J., Buck K. W. 1992; Cooperative binding of the red clover necrotic mosaic virus movement protein to single-stranded nucleic acids. Journal of General Virology 73:223–227
    [Google Scholar]
  39. Petty I. T., Jackson A. O. 1990; Mutational analysis of barley stripe mosaic virus RNAβ. Virology 179:712–718
    [Google Scholar]
  40. Petty I. T., Hunter B. G., Jackson A. O. 1988; A novel strategy for one-step cloning of full-length cDNA and its application to the genome of barley stripe mosaic virus. Gene 74:423–432
    [Google Scholar]
  41. Petty I. T., Hunter B. G., Wei N., Jackson A. O. 1989; Infectious barley stripe mosaic virus RNA transcribed in vitro from full-length genomic cDNA clones. Virology 171:342–349
    [Google Scholar]
  42. Prokhorov V. V., Klinov D. V., Demin V. V. 1999; Methodological peculiarities of DNA observation by atomic force microscopy. Russian Journal of Bioorganic Chemistry 25:211–213
    [Google Scholar]
  43. Rouleau M., Smith R. J., Bancroft J. B., Mackie G. A. 1994; Purification, properties, and subcellular localization of foxtail mosaic potexvirus 26-kDa protein. Virology 204:254–265
    [Google Scholar]
  44. Ryabov E. V., Oparka K. J., Santa Cruz S., Robinson D. J., Taliansky M. E. 1998; Intracellular location of two groundnut rosette umbravirus proteins delivered by PVX and TMV vectors. Virology 242:303–313
    [Google Scholar]
  45. Ryabov E. V., Robinson D. J., Taliansky M. E. 1999; A plant virus-encoded protein facilitates long-distance movement of heterologous viral RNA. Proceedings of the National Academy of Sciences, USA 96:1212–1217
    [Google Scholar]
  46. Sambrook J., Fritsch E. F., Maniatis T. A. 1989 Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  47. Solovyev A. G., Savenkov E. I., Agranovsky A. A., Morozov S. Yu. 1996; Comparisons of the genomic cis -elements and coding regions in RNAβ components of the hordeiviruses barley stripe mosaic virus, lychnis ringspot virus, and poa semilatent virus. Virology 219:9–18
    [Google Scholar]
  48. Solovyev A. G., Savenkov E. I., Grdzelishvili V. Z., Kalinina N. O., Morozov S. Yu., Schiemann J., Atabekov J. G. 1999; Movement of hordeivirus hybrids with exchanges in the triple gene block. Virology 253:278–287
    [Google Scholar]
  49. Taliansky M. E., Robinson D. J., Murant A. F. 1996; Complete nucleotide sequence and organization of the RNA genome of groundnut rosette umbravirus. Journal of General Virology 77:2335–2345
    [Google Scholar]
  50. Tsai M. S., Hsu Y. H., Lin N. S. 1999; Bamboo mosaic potexvirus satellite RNA (satBaMV RNA)-encoded P20 protein preferentially binds to satBaMV RNA. Journal of Virology 73:3032–3039
    [Google Scholar]
  51. Tzfira T., Rhee Y., Chen M. H., Kunik T., Citovsky V. 2000; Nucleic acid transport in plant–microbe interactions: the molecules that walk through the walls. Annual Review of Microbiology 54:187–219
    [Google Scholar]
  52. Urcuqui-Inchima S., Maia I. G., Arruda P., Haenni A. L., Bernardi F. 2000; Deletion mapping of the potyviral helper component-proteinase reveals two regions involved in RNA binding. Virology 268:104–111
    [Google Scholar]
  53. Voinnet O., Lederer C., Baulcombe D. C. 2000; A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana . Cell 103:157–167
    [Google Scholar]
  54. Wobbe K. K., Akgoz M., Dempsey D. A., Klessig D. F. 1998; A single amino acid change in turnip crinkle virus movement protein p8 affects RNA binding and virulence on Arabidopsis thaliana . Journal of Virology 72:6247–6250
    [Google Scholar]
  55. Wung C.-H., Hsu Y.-H., Liou D.-Y., Huang W.-C., Lin N.-S., Chang B.-Y. 1999; Identification of the RNA-binding sites of the triple gene block protein 1 of bamboo mosaic potexvirus. Journal of General Virology 80:1119–1126
    [Google Scholar]
  56. Yang Y., Ding B., Baulcombe D. C., Verchot J. 2000; Cell-to-cell movement of the 25K protein of potato virus X is regulated by three other viral proteins. Molecular Plant–Microbe Interactions 13:599–605
    [Google Scholar]
  57. Zhou M., Williams A. K., Chung S.-I., Wang L., Collisson E. W. 1996; The infectious bronchitis virus nucleocapsid protein binds RNA sequences in the 3′ terminus of the genome. Virology 217:191–199
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-10-2569
Loading
/content/journal/jgv/10.1099/0022-1317-82-10-2569
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error