1887

Abstract

In order to study the evolution of human immunodeficiency virus type 1 (HIV-1) in patients with normal clinical evolution, six individuals were selected from a group of 46 patients followed for 1 to 4 years. Patients were selected not by clinical progression characteristics but on the basis of virus genetic variability, as analysed by heteroduplex mobility assay and RNase A mismatch cleavage method. Two patients displayed a homogeneous virus population, two showed very heterogeneous quasispecies and two presented two distinct variants within the virus population. Virus quasispecies were studied by nucleotide sequencing of the C2-fusion domain of the gene. Virus evolution was approached by analysing the distribution of genetic distances, calculation of divergence and heterogeneity as well as the / ratio and by the construction of the phylogenetic trees. Three patients displayed the same tree topology, characterized by the presence of independent clades supported by high bootstrap values, whereas this pattern was not present in the other three patients. In the three patients displaying independent clades, a recombination analysis was carried out between distinct subpopulations and recombinant variants were identified. In one patient of this group, different selective pressures were detected in distinct virus clades, measured by their corresponding / ratios, revealing that different evolutionary forces are occurring at the same time within the same patient. These results show that multiple evolutionary patterns can be found in typical HIV-1-infected patients.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-10-2495
2001-10-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/10/0822495a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-10-2495&mimeType=html&fmt=ahah

References

  1. Anonymous ( 1992; ). 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. Morbidity and Mortality Weekly Report 41, 1–19.
    [Google Scholar]
  2. Bagnarelli, P., Mazzola, F., Menzo, S., Montroni, M., Butini, L. & Clementi, M. ( 1999; ). Host-specific modulation of the selective constraints driving human immunodeficiency virus type 1 env gene evolution. Journal of Virology 73, 3764-3777.
    [Google Scholar]
  3. Ball, J. K., Holmes, E. C., Whitwell, H. & Desselberger, U. ( 1994; ). Genomic variation of human immunodeficiency virus type 1 (HIV-1): molecular analyses of HIV-1 in sequential blood samples and various organs obtained at autopsy. Journal of General Virology 75, 867-879.[CrossRef]
    [Google Scholar]
  4. Boom, R., Sol, C. J. A., Salimans, M. M. M., Jansen, C. L., Wertheim-van Dillen, P. M. E. & Van der Noordaa, J. ( 1990; ). Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology 28, 495-503.
    [Google Scholar]
  5. Casado, C., Urtasun, I., Martin-Walther, M. V., Garcia, S., Rodriguez, C., del Romero, J. & Lopez-Galindez, C. ( 2000a; ). Genetic analysis of HIV-1 samples from Spain. Journal of Acquired Immune Deficiency Syndromes 23, 68-74.[CrossRef]
    [Google Scholar]
  6. Casado, C., Urtasun, I., Saragosti, S., Chaix, M. L., de Rossi, A., Cattelan, A. M., Dietrich, U. & Lopez-Galindez, C. ( 2000b; ). Different distribution of HIV type 1 genetic variants in European patients with distinct risk practices. AIDS Research and Human Retroviruses 16, 299-304.[CrossRef]
    [Google Scholar]
  7. Chao, L. ( 1994; ). Evolution of genetic exchange in RNA viruses. In The Evolutionary Biology of Viruses , pp. 233-250. Edited by S. S. Morse. New York:Raven Press.
  8. Cheynier, R., Henrichwark, S., Hadida, F., Pelletier, E., Oksenhendler, E., Autran, B. & Wain-Hobson, S. ( 1994; ). HIV and T cell expansion in splenic white pulps is accompanied by infiltration of HIV-specific cytotoxic T lymphocytes. Cell 78, 373-387.[CrossRef]
    [Google Scholar]
  9. Cheynier, R., Gratton, S., Halloran, M., Stahmer, I., Letvin, N. L. & Wain-Hobson, S. ( 1998; ). Antigenic stimulation by BCG vaccine as an in vivo driving force for SIV replication and dissemination. Nature Medicine 4, 421-427.[CrossRef]
    [Google Scholar]
  10. Coffin, J. M. ( 1995; ). HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267, 483-489.[CrossRef]
    [Google Scholar]
  11. Delassus, S., Cheynier, R. & Wain-Hobson, S. ( 1992; ). Nonhomogeneous distribution of human immunodeficiency virus type 1 proviruses in the spleen. Journal of Virology 66, 5642-5645.
    [Google Scholar]
  12. Delwart, E. L., Shpaer, E. G., Louwagie, J., McCutchan, F. E., Grez, M., Rübsamen-Waigmann, H. & Mullins, J. I. ( 1993; ). Genetic relationships determined by a DNA heteroduplex mobility assay: analysis of HIV-1 env genes. Science 262, 1257-1261.[CrossRef]
    [Google Scholar]
  13. Delwart, E. L., Pan, H., Sheppard, H. W., Wolpert, D., Neumann, A. U., Korber, B. & Mullins, J. I. ( 1997; ). Slower evolution of human immunodeficiency virus type 1 quasispecies during progression to AIDS. Journal of Virology 71, 7498-7508.
    [Google Scholar]
  14. Delwart, E. L., Mullins, J. I., Gupta, P., Learn, G. H.Jr, Holodniy, M., Katzenstein, D., Walker, B. D. & Singh, M. K. ( 1998; ). Human immunodeficiency virus type 1 populations in blood and semen. Journal of Virology 72, 617-623.
    [Google Scholar]
  15. Domingo, D. & Holland, J. J. ( 1994; ). Mutation rates and rapid evolution of RNA viruses. In The Evolutionary Biology of Viruses , pp. 161-184. Edited by S. S. Morse. New York:Raven Press.
  16. Eigen, M. & Biebricher, C. K. ( 1988; ). Sequence space and quasispecies distribution. In RNA Genetics , pp. 211-245. Edited by E. Domingo, J. J. Holland & P. Ahlquist. Boca Raton, FL:CRC Press.
  17. Felsenstein, J. (1993). PHYLIP (Phylogeny Interference Package), version 3.5c. Department of Genetics, University of Washington, Seattle, WA, USA. Distributed by the author.
  18. Ganeshan, S., Dickover, R. E., Korber, B. T. M., Bryson, Y. J. & Wolinsky, S. M. ( 1997; ). Human immunodeficiency virus type 1 genetic evolution in children with different rates of development of disease. Journal of Virology 71, 663-677.
    [Google Scholar]
  19. Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M. & Markowitz, M. ( 1995; ). Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123-126.[CrossRef]
    [Google Scholar]
  20. Jetzt, A. E., Yu, H., Klarmann, G. J., Ron, Y., Preston, B. D. & Dougherty, J. P. ( 2000; ). High rate of recombination throughout the human immunodeficiency virus type 1 genome. Journal of Virology 74, 1234-1240.[CrossRef]
    [Google Scholar]
  21. Kestler, H. W.III, Ringler, D. J., Mori, K., Panicali, D. L., Sehgal, P. K., Daniel, M. D. & Desrosiers, R. C. ( 1991; ). Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65, 651-662.[CrossRef]
    [Google Scholar]
  22. Kirchhoff, F., Greenough, T. C., Brettler, D. B., Sullivan, J. L. & Desrosiers, R. C. ( 1995; ). Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. New England Journal of Medicine 332, 228-232.[CrossRef]
    [Google Scholar]
  23. Korber, B. T. M., MacInnes, K., Smith, R. F. & Myers, G. ( 1994; ). Mutational trends in V3 loop protein sequences observed in different genetic lineages of human immunodeficiency virus type 1. Journal of Virology 68, 6730-6744.
    [Google Scholar]
  24. Kumar, S., Tamura, K. & Nei, M. (1993). MEGA: Molecular Evolutionary Genetics Analysis, version 1.01. University Park, PA: Pennsylvania State University.
  25. Lai, M. M. ( 1992; ). Genetic recombination in RNA viruses. Current Topics in Microbiology and Immunology 176, 21-32.
    [Google Scholar]
  26. Larder, B. A., Chesebro, B. & Richman, D. D. ( 1990; ). Susceptibilities of zidovudine-susceptible and -resistant human immunodeficiency virus isolates to antiviral agents determined by using a quantitative plaque reduction assay. Antimicrobial Agents and Chemotherapy 34, 436-441.[CrossRef]
    [Google Scholar]
  27. Liu, S.-L., Schacker, T., Musey, L., Shriner, D., McElrath, M. J., Corey, L. & Mullins, J. I. ( 1997; ). Divergent patterns of progression to AIDS after infection from the same source: human immunodeficiency virus type 1 evolution and antiviral responses. Journal of Virology 71, 4284-4295.
    [Google Scholar]
  28. López-Galı́ndez, C., Rojas, J. M., Nájera, R., Richman, D. D. & Perucho, M. ( 1991; ). Characterization of genetic variation and 3′-azido-3′-deoxythymidine-resistance mutations of human immunodeficiency virus by the RNase A mismatch cleavage method. Proceedings of the National Academy of Sciences, USA 88, 4280-4284.[CrossRef]
    [Google Scholar]
  29. Lukashov, V. V. & Goudsmit, J. ( 1997; ). Evolution of the human immunodeficiency virus type 1 subtype-specific V3 domain is confined to a sequence space with a fixed distance to the subtype consensus. Journal of Virology 71, 6332-6338.
    [Google Scholar]
  30. McDonald, R. A., Mayers, D. L., Chung, R. C., Wagner, K. F., Ratto-Kim, S., Birx, D. L. & Michael, N. L. ( 1997; ). Evolution of human immunodeficiency virus type 1 env sequence variation in patients with diverse rates of disease progression and T-cell function. Journal of Virology 71, 1871-1879.
    [Google Scholar]
  31. Mariani, R., Kirchhoff, F., Greenough, T. C., Sullivan, J. L., Desrosiers, R. C. & Skowronski, J. ( 1996; ). High frequency of defective nef alleles in a long-term survivor with nonprogressive human immunodeficiency virus type 1 infection. Journal of Virology 70, 7752-7764.
    [Google Scholar]
  32. Meyerhans, A., Cheynier, R., Albert, J., Seth, M., Kwok, S., Sninsky, J., Morfeldt-Manson, L., Asjö, B. & Wain-Hobson, S. ( 1989; ). Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations. Cell 58, 901-910.[CrossRef]
    [Google Scholar]
  33. Meyerhans, A., Vartanian, J. P., Hultgren, C., Plikat, U., Karlsson, A., Wang, L., Eriksson, S. & Wain-Hobson, S. ( 1994; ). Restriction and enhancement of human immunodeficiency virus type 1 replication by modulation of intracellular deoxynucleoside triphosphate pools. Journal of Virology 68, 535-540.
    [Google Scholar]
  34. Mulder, J., McKinney, N., Christopherson, C., Sninsky, J., Greenfield, L. & Kwok, S. ( 1994; ). Rapid and simple PCR assay for quantitation of human immunodeficiency virus type 1 RNA in plasma: application to acute retroviral infection. Journal of Clinical Microbiology 32, 292-300.
    [Google Scholar]
  35. Myers, G., Korber, B., Hahn, B. H., Jeang, K.-T., Mellors, J. W., McCutchan, F. E., Henderson, L. E. & Pavlakis, G. N. (editors) (1995). Human Retroviruses and AIDS 1995: a Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. Los Alamos, NM: Theoretical Biology and Biophysics Group, Los Alamos National Laboratory.
  36. Nei, M. & Gojobori, T. ( 1986; ). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3, 418-426.
    [Google Scholar]
  37. Nixon, D. F., Townsend, A. R., Elvin, J. G., Rizza, C. R., Gallwey, J. & McMichael, A. J. ( 1988; ). HIV-1 gag-specific cytotoxic T lymphocytes defined with recombinant vaccinia virus and synthetic peptides. Nature 336, 484-487.[CrossRef]
    [Google Scholar]
  38. Page, R. D. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357-358.
    [Google Scholar]
  39. Pantaleo, G., Graziosi, C., Demarest, J. F., Butini, L., Montroni, M., Fox, C. H., Orenstein, J. M., Kotler, D. P. & Fauci, A. S. ( 1993; ). HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362, 355-358.[CrossRef]
    [Google Scholar]
  40. Pantaleo, G., Graziosi, C., Demarest, J. F., Cohen, O. J., Vaccarezza, M., Gantt, K., Muro-Cacho, C. & Fauci, A. S. ( 1994; ). Role of lymphoid organs in the pathogenesis of human immunodeficiency virus (HIV) infection. Immunological Reviews 140, 105-130.[CrossRef]
    [Google Scholar]
  41. Pantaleo, G., Menzo, S., Vaccarezza, M., Graziosi, C., Cohen, O. J., Demarest, J. F., Montefiori, D., Orenstein, J. M., Fox, C., Schrager, L. K., Margolick, J. B., Buchbinder, S., Giorgi, J. V. & Fauci, A. S. ( 1995; ). Studies in subjects with long-term nonprogressive human immunodeficiency virus infection. New England Journal of Medicine 332, 209-216.[CrossRef]
    [Google Scholar]
  42. Pelletier, E., Saurin, W., Cheynier, R., Letvin, N. L. & Wain-Hobson, S. ( 1995; ). The tempo and mode of SIV quasispecies development in vivo calls for massive viral replication and clearance. Virology 208, 644-652.[CrossRef]
    [Google Scholar]
  43. Perucho, M., Goldfarb, M., Shimizu, K., Lama, C., Fogh, J. & Wigler, M. ( 1981; ). Human-tumor-derived cell lines contain common and different transforming genes. Cell 27, 467-476.[CrossRef]
    [Google Scholar]
  44. Plikat, U., Nieselt-Struwe, K. & Meyerhans, A. ( 1997; ). Genetic drift can dominate short-term human immunodeficiency virus type 1 nef quasispecies evolution in vivo. Journal of Virology 71, 4233-4240.
    [Google Scholar]
  45. Ray, S. C. (1999). SimPlot for Windows 95/NT, version 2.4. Baltimore, MD. Distributed by the author.
  46. Sabino, E. C., Shpaer, E. G., Morgado, M. G., Korber, B. T. M., Diaz, R. S., Bongertz, V., Cavalcante, S., Galvão-Castro, B., Mullins, J. I. & Mayer, A. ( 1994; ). Identification of human immunodeficiency virus type 1 envelope genes recombinant between subtypes B and F in two epidemiologically linked individuals from Brazil. Journal of Virology 68, 6340-6346.
    [Google Scholar]
  47. Sala, M., Pelletier, E. & Wain-Hobson, S. ( 1995; ). HIV-1 gp120 sequences from a doubly infected drug user. AIDS Research and Human Retroviruses 11, 653-655.[CrossRef]
    [Google Scholar]
  48. Salvatori, F., Masiero, S., Giaquinto, C., Wade, C. M., Brown, A. J. L., Chieco-Bianchi, L. & de Rossi, A. ( 1997; ). Evolution of human immunodeficiency virus type 1 in perinatally infected infants with rapid and slow progression to disease. Journal of Virology 71, 4694-4706.
    [Google Scholar]
  49. Sánchez-Palomino, S., Rojas, J. M., Martı́nez, M. A., Fenyö, E. M., Nájera, R., Domingo, E. & López-Galı́ndez, C. ( 1993; ). Dilute passage promotes expression of genetic and phenotypic variants of human immunodeficiency virus type 1 in cell culture. Journal of Virology 67, 2938-2943.
    [Google Scholar]
  50. Shankarappa, R., Gupta, P., Learn, G. H.Jr, Rodrigo, A. G., Rinaldo, C. R.Jr, Gorry, M. C., Mullins, J. I., Nara, P. L. & Ehrlich, G. D. ( 1998; ). Evolution of human immunodeficiency virus type 1 envelope sequences in infected individuals with differing disease progression profiles. Virology 241, 251-259.[CrossRef]
    [Google Scholar]
  51. Shankarappa, R., Margolick, J. B., Gange, S. J., Rodrigo, A. G., Upchurch, D., Farzadegan, H., Gupta, P., Rinaldo, C. R., Learn, G. H., He, X., Huang, X. L. & Mullins, J. I. ( 1999; ). Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. Journal of Virology 73, 10489-10502.
    [Google Scholar]
  52. Shioda, T., Oka, S., Xin, X., Liu, H., Harukuni, R., Kurotani, A., Fukushima, M., Hasan, M. K., Shiino, T., Takebe, Y., Iwamoto, A. & Nagai, Y. ( 1997; ). In vivo sequence variability of human immunodeficiency virus type 1 envelope gp120: association of V2 extension with slow disease progression. Journal of Virology 71, 4871-4881.
    [Google Scholar]
  53. Simmonds, P., Zhang, L. Q., McOmish, F., Balfe, P., Ludlam, C. A. & Brown, A. J. L. ( 1991; ). Discontinuous sequence change of human immunodeficiency virus (HIV) type 1 env sequences in plasma viral and lymphocyte-associated proviral populations in vivo; implications for models of HIV pathogenesis. Journal of Virology 65, 6266-6276.
    [Google Scholar]
  54. Takehisa, J., Zekeng, L., Ido, E., Yamaguchi-Kabata, Y., Mboudjeka, I., Harada, Y., Miura, T., Kaptu, L. & Hayami, M. ( 1999; ). Human immunodeficiency virus type 1 intergroup (M/O) recombination in Cameroon. Journal of Virology 73, 6810-6820.
    [Google Scholar]
  55. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673-4680.[CrossRef]
    [Google Scholar]
  56. Vartanian, J.-P., Meyerhans, A., Åsjö, B. & Wain-Hobson, S. ( 1991; ). Selection, recombination, and G→A hypermutation of human immunodeficiency virus type 1 genomes. Journal of Virology 65, 1779-1788.
    [Google Scholar]
  57. Vartanian, J.-P., Meyerhans, A., Sala, M. & Wain-Hobson, S. ( 1994; ). G→A hypermutation of the human immunodeficiency virus type 1 genome: evidence for dCTP pool imbalance during reverse transcription. Proceedings of the National Academy of Sciences, USA 91, 3092-3096.[CrossRef]
    [Google Scholar]
  58. Wang, B., Lal, R. B., Dwyer, D. E., Miranda-Saksena, M., Boadle, R., Cunningham, A. L. & Saksena, N. K. ( 2000; ). Molecular and biological interactions between two HIV-1 strains from a coinfected patient reveal the first evidence in favor of viral synergism. Virology 274, 105-119.[CrossRef]
    [Google Scholar]
  59. Wei, X., Ghosh, S. K., Taylor, M. E., Johnson, V. A., Emini, E. A., Deutsch, P., Lifson, J. D., Bonhoeffer, S., Nowak, M. A., Hahn, B. H., Saag, M. S. & Shaw, G. M. ( 1995; ). Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117-122.[CrossRef]
    [Google Scholar]
  60. Wolinsky, S. M., Korber, B. T. M., Neumann, A. U., Daniels, M., Kunstman, K. J., Whetsell, A. J., Furtado, M. R., Cao, Y., Ho, D. D., Safrit, J. T. & Koup, R. A. ( 1996; ). Adaptive evolution of human immunodeficiency virus type 1 during the natural course of infection. Science 272, 537-542.[CrossRef]
    [Google Scholar]
  61. Wong, J. K., Ignacio, C. C., Torriani, F., Havlir, D., Fitch, N. J. S. & Richman, D. D. ( 1997; ). In vivo compartmentalization of human immunodeficiency virus: evidence from the examination of pol sequences from autopsy tissues. Journal of Virology 71, 2059-2071.
    [Google Scholar]
  62. Yamaguchi, Y. & Gojobori, T. ( 1997; ). Evolutionary mechanisms and population dynamics of the third variable envelope region of HIV within single hosts. Proceedings of the National Academy of Sciences, USA 94, 1264-1269.[CrossRef]
    [Google Scholar]
  63. Yuste, E., Sánchez-Palomino, S., Casado, C., Domingo, E. & López-Galı́ndez, C. ( 1999; ). Drastic fitness loss in human immunodeficiency virus type 1 upon serial bottleneck events. Journal of Virology 73, 2745-2751.
    [Google Scholar]
  64. Zhang, L. Q., MacKenzie, P., Cleland, A., Holmes, E. C., Brown, A. J. L. & Simmonds, P. ( 1993; ). Selection for specific sequences in the external envelope protein of human immunodeficiency virus type 1 upon primary infection. Journal of Virology 67, 3345-3356.
    [Google Scholar]
  65. Zhu, T., Wang, N., Carr, A., Wolinsky, S. & Ho, D. D. ( 1995; ). Evidence for coinfection by multiple strains of human immunodeficiency virus type 1 subtype B in an acute seroconvertor. Journal of Virology 69, 1324-1327.
    [Google Scholar]
  66. Zhu, T., Wang, N., Carr, A., Nam, D. S., Moor-Jankowski, R., Cooper, D. A. & Ho, D. D. ( 1996; ). Genetic characterization of human immunodeficiency virus type 1 in blood and genital secretions: evidence for viral compartmentalization and selection during sexual transmission. Journal of Virology 70, 3098-3107.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-10-2495
Loading
/content/journal/jgv/10.1099/0022-1317-82-10-2495
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error