1887

Abstract

Human cytomegalovirus (HCMV) is known to down-regulate the expression of human leukocyte antigen (HLA) class I, the process of which involves a subset of virus genes. Infection of human foreskin fibroblast (HFF) cells with UV-inactivated HCMV (UV-HCMV), however, resulted in an increase in HLA class I presentation on the cell surface in the absence of HCMV gene expression. Heparin, which inhibits the interaction of virus particles with cell surface heparan sulfate proteoglycans (HSPGs), blocked the effect of UV-HCMV on HLA class I expression. Pretreatment of cells with heparinase I decreased in a dose-dependent manner the effect of UV-HCMV on HLA class I expression enhancement. Sodium chlorate, which is known to inhibit the sulfation of HSPGs, gave a similar result. Pretreatment of UV-HCMV with trypsin or monoclonal antibody reactive with the envelope glycoprotein gB reduced the increase in HLA class I expression on the HFF cell surface by UV-HCMV. RT–PCR analysis demonstrated that the increase in HLA class I presentation on the HFF cell surface was due to an increase in HLA class I transcription. Thus, binding of HCMV particles to cell surface HSPGs appears to be required for the stimulation of HLA class I expression. It is also possible that virus entry, in addition to binding to HSPGs, may be involved in the stimulation of HLA class I expression, since the UV-HCMV entered the cells and all treatments to block virus binding to HSPGs would necessarily prevent virus entry.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-10-2405
2001-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/10/0822405a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-10-2405&mimeType=html&fmt=ahah

References

  1. Ahn K., Angulo A., Ghazal P., Peterson P. A., Yang Y., Fruh K. 1996; Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proceedings of the National Academy of Sciences, USA 93:10990–10995
    [Google Scholar]
  2. Ahn K., Gruhler A., Galocha B., Jones T. R., Wiertz E. J., Ploegh H. L., Peterson P. A., Yang Y., Fruh K. 1997; The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6:613–621
    [Google Scholar]
  3. Albrecht T., Fons M. P., Boldogh I., AbuBakar S., Deng C. Z., Millinoff D. 1991; Metabolic and cellular effects of human cytomegalovirus infection. Transplantation Proceedings 23:48–54
    [Google Scholar]
  4. Alcami A., Koszinowski U. H. 2000; Viral mechanisms of immune evasion. Trends in Microbiology 9:410–418
    [Google Scholar]
  5. Bodaghi B., Jones T. R., Zipeto D., Vita C., Sun L., Laurent L., Arenzana-Seisdedos F., Virelizier J. L., Michelson S. 1998; Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. Journal of Experimental Medicine 188:855–866
    [Google Scholar]
  6. Boyle K. A., Compton T. 1998; Receptor-binding properties of a soluble form of human cytomegalovirus glycoprotein B. Journal of Virology 72:1826–1833
    [Google Scholar]
  7. Boyle K. A., Pietropaolo R. L., Compton T. 1999; Engagement of the cellular receptor for glycoprotein B of human cytomegalovirus activates the interferon-responsive pathway. Molecular and Cellular Biology 19:3607–3613
    [Google Scholar]
  8. Bresnahan W. A., Shenk T. E. 2000; UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells. Proceedings of the National Academy of Sciences, USA 97:14506–14511
    [Google Scholar]
  9. Britt W. J., Alford C. A. 1996; Cytomegalovirus. In Virology pp 2493–2593 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  10. Compton T., Nowlin D. M., Cooper N. R. 1993; Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology 193:834–841
    [Google Scholar]
  11. Fortunato E. A., Dell’Aquila M. L., Spector D. H. 2000a; Specific chromosome 1 breaks induced by human cytomegalovirus. Proceedings of the National Academy of Sciences, USA 97:853–858
    [Google Scholar]
  12. Fortunato E. A., McElroy A. K., Sanchez I., Spector D. H. 2000b; Exploitation of cellular signaling and regulatory pathways by human cytomegalovirus. Trends in Microbiology 8:111–119
    [Google Scholar]
  13. Gallina A., Simoncini L., Garbelli S., Percivalle E., Pedrali-Noy G., Lee K. S., Erikson R. L., Plachter B., Gerna G., Milanesi G. 1999; Polo-like kinase 1 as a target for human cytomegalovirus pp65 lower matrix protein. Journal of Virology 73:1468–1478
    [Google Scholar]
  14. Hengel H., Flohr T., Hämmerling G. J., Koszinowski U. H., Momburg F. 1996; Human cytomegalovirus inhibits peptide translocation into the endoplasmic reticulum for MHC class I assembly. Journal of General Virology 77:2287–2296
    [Google Scholar]
  15. Hengel H., Brune W., Koszinowski U. H. 1998; Immune evasion by cytomegalovirus: survival strategies of a highly adapted opportunist. Trends in Microbiology 6:190–197
    [Google Scholar]
  16. Homer E. G., Rinaldi A., Nicholl M. J., Preston C. M. 1999; Activation of herpesvirus gene expression by the human cytomegalovirus protein pp71. Journal of Virology 73:8512–8518
    [Google Scholar]
  17. Johnson D. R., Biedermann B. C., Mook-Kanamori B. 2000; Rpaid cloning of HLA class I cDNA by locus-specific PCR. Journal of Immunological Methods 233:119–129
    [Google Scholar]
  18. Jones T. R., Sun L. 1997; Human cytomegalovirus US2 destabilizes major histocompatibility complex class I heavy chains. Journal of Virology 71:2970–2979
    [Google Scholar]
  19. Jones T. R., Wiertz E. J., Sun L., Fish K. N., Nelson J. A., Ploegh H. L. 1996; Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proceedings of the National Academy of Sciences, USA 15:11327–11333
    [Google Scholar]
  20. Kang K. H., Yoo C. H., Lee C. H. 1993; Increased cytosolic free calcium concentration following HCMV infection of human embryo lung cells. Molecules and Cells 3:319–325
    [Google Scholar]
  21. Kari B., Gehrz R. 1992; A cytomegalovirus glycoprotein complex designated gC-II is a major heparin-binding component of the envelope. Journal of Virology 66:1761–1764
    [Google Scholar]
  22. Keay S., Merigan T. C., Rasmussen L. 1989; Identification of cell surface receptors for the 86-kilodalton glycoprotein of human cytomegalovirus. Proceedings of the National Academy of Sciences, USA 86:10100–10103
    [Google Scholar]
  23. Keller K. M., Brauer P. R., Keller J. M. 1989; Modulation of cell surface heparan sulfate structure by growth of cells in the presence of chlorate. Biochemistry 28:8100–8107
    [Google Scholar]
  24. Lee G. C., Song B. H., Lee C. H. 2001; Increase in the expression of human leukocyte antigen class I in human fibroblasts by soluble factors secreted from human cytomegalovirus-infected cells. Molecules and Cells 11:392–398
    [Google Scholar]
  25. Michelson S., Dal Monte P., Zipeto D., Bodaghi B., Laurent L., Oberlin E., Arenzana-Seisdedos F., Virelizier J. L., Landini M. P. 1997; Modulation of RANTES production by human cytomegalovirus infection of fibroblasts. Journal of Virology 71:6495–6500
    [Google Scholar]
  26. Miller D. M., Sedmak D. D. 1999; Viral effects on antigen processing. Current Opinion in Immunology 11:94–99
    [Google Scholar]
  27. Miller D. M., Zhang Y., Rahill B. M., Waldman W. J., Sedmak D. D. 1999; Human cytomegalovirus inhibits IFN-α-stimulated antiviral and immunoregulatory responses by blocking multiple levels of IFN-α signal transduction. Journal of Immunology 162:6107–6113
    [Google Scholar]
  28. Navarro L., Mowen K., Rodems S., Weaver B., Reich N., Spector D., David M. 1998; Cytomegalovirus activates interferon immediate-early response gene expression and an interferon regulatory factor 3-containing interferon-stimulated response element-binding complex. Molecular and Cellular Biology 18:3796–3802
    [Google Scholar]
  29. Neyts S., Snoeck R., Schols D., Balzarini J., Esko J. D., Van Schepdael A., De Clercq E. 1992; Sulfated polymers inhibit the interaction of human cytomegalovirus with cell surface heparan sulfate. Virology 189:48–58
    [Google Scholar]
  30. Pepperl S., Munster J., Mach M., Harris J. R., Plachter B. 2000; Dense bodies of human cytomegalovirus induce both humoral and cellular immune responses in the absence of viral gene expression. Journal of Virology 74:6132–6146
    [Google Scholar]
  31. Pietropaolo R. L., Compton T. 1997; Direct interaction between human cytomegalovirus glycoprotein B and cellular annexin II. Journal of Virology 71:9803–9807
    [Google Scholar]
  32. Ploegh H. L. 1998; Viral strategies of immune evasion. Science 280:248–253
    [Google Scholar]
  33. Plotkin A. A. 1999; Cytomegalovirus vaccine. American Heart Journal 138:S484–S487
    [Google Scholar]
  34. Soderberg C., Giugni T. D., Zaia J. A., Larsson S., Wahlberg J. M., Moller E. 1993; CD13 (human amniopeptidase N) mediates human cytomegalovirus infection. Journal of Virology 67:6576–6585
    [Google Scholar]
  35. Speir E., Shibutani T., Yu Z. X., Ferrans V., Epstein S. E. 1996; Role of reactive oxygen intermediates in cytomegalovirus gene expression and in the response of human smooth muscle cells to viral infection. Circulation Research 79:1143–1152
    [Google Scholar]
  36. Wiertz E., Jones T. R., Sun L., Bogyo M., Geuze H. J., Ploegh H. L. 1996; The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:769–779
    [Google Scholar]
  37. Wiertz E., Hill A., Tortorella D., Ploegh H. 1997; Cytomegaloviruses use multiple mechanisms to elude the host immune response. Immunology Letters 57:213–216
    [Google Scholar]
  38. Wright J. F., Kuroski A., Wasi S. 1994; An endothelial cell-surface form of annexin II binds human cytomegalovirus. Biochemical and Biophysical Research Communications 198:983–989
    [Google Scholar]
  39. Yurochko A. D., Huang E. S. 1999; Human cytomegalovirus binding to human monocytes induces immunoregulatory gene expression. Journal of Immunology 162:4806–4816
    [Google Scholar]
  40. Zhu H., Cong J. P., Shenk T. 1997; Use of differential display analysis to assess the effect of human cytomegalovirus infection on the accumulation of cellular RNAs: induction of interferon-responsive RNAs. Proceedings of the National Academy of Sciences, USA 94:13985–13990
    [Google Scholar]
  41. Zhu H., Cong J. P., Mamtora G., Gingeras T., Shenk T. 1998; Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proceedings of the National Academy of Sciences, USA 95:14470–14475
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-10-2405
Loading
/content/journal/jgv/10.1099/0022-1317-82-10-2405
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error