1887

Abstract

Human herpesvirus-8 (HHV-8) is believed to be the aetiological agent of Kaposi’s sarcoma (KS). KS accounts for half the reported cancer cases in Uganda, and occurs in endemic and epidemic [human immunodeficiency virus (HIV)-associated] forms. We confirmed a high prevalence (74%) of HHV-8 antibodies in 114 HIV-negative Ugandan blood donors, and characterized the genomes of HHV-8 strains present in 30 adult Ugandan KS patients. Phylogenetic analysis of the uniquely variable K1 gene indicated that the majority of KS patients were infected by the B subtype of HHV-8, several by the A5 subtype, and one by a variant of the C subtype. Sequence analysis of nine strains at several other genome loci spaced out across the genome indicated that five are recombinants between subtypes when considered independently of previously published definitions of parental (unrecombined) genotypes. When previously published parental genotypes were taken into account, seven of the nine strains appeared to be recombinants. Analysis of the K15 gene, which exists in HHV-8 in two highly diverged alleles, indicated that the P allele predominates, with only a single strain bearing the M allele. Divergence between the M allele in the latter strain and that in the previously sequenced BC1 strain is at least as great as that between representatives of the P allele. This indicates that introduction of the M allele into extant HHV-8 subtypes did not occur by a single, relatively recent recombination event as was concluded from a previous study in which very limited variation in the M allele was reported.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-10-2393
2001-10-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/10/0822393a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-10-2393&mimeType=html&fmt=ahah

References

  1. Alagiozoglou, L., Sitas, F. & Morris, L. ( 2000; ). Phylogenetic analysis of human herpesvirus-8 in South Africa and identification of a novel subgroup. Journal of General Virology 81, 2029-2038.
    [Google Scholar]
  2. Bandelt, H. J., Forster, P., Sykes, B. C. & Richards, M. B. ( 1995; ). Mitochondrial portraits of human populations using median networks. Genetics 141, 743-753.
    [Google Scholar]
  3. Beral, V. ( 1991; ). Epidemiology of Kaposi’s sarcoma. In Cancer, HIV and AIDS (Cancer Surveys, vol. 10) , pp. 5-22. Edited by V. Beral, H. W. Jaffe & R. A. Weiss. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory.
  4. Biggar, R. J., Whitby, D., Marshall, V., Linhares, A. C. & Black, F. ( 2000; ). Human herpesvirus 8 in Brazilian Amerindians: a hyperendemic population with a new subtype. Journal of Infectious Diseases 181, 1562-1568.[CrossRef]
    [Google Scholar]
  5. Boshoff, C., Whitby, D., Hatziioannou, T., Fisher, C., van der Walt, J., Hatzakis, A., Weiss, R. & Schulz, T. ( 1995; ). Kaposi’s sarcoma-associated herpesvirus in HIV-negative Kaposi’s sarcoma. Lancet 345, 1043-1044.
    [Google Scholar]
  6. Boshoff, C., Gao, S. J., Healy, L. E., Matthews, S., Thomas, A. J., Coignet, L., Warnke, R. A., Strauchen, J. A., Matutes, E., Kamel, O. W., Moore, P. S., Weiss, R. A. & Chang, Y. ( 1998; ). Establishing a KSHV+ cell line (BCP-1) from peripheral blood and characterizing its growth in Nod/SCID mice. Blood 91, 1671-1679.
    [Google Scholar]
  7. Chang, Y., Cesarman, E., Pessin, M. S., Lee, F., Culpepper, J., Knowles, D. M. & Moore, P. S. ( 1994; ). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266, 1865-1869.[CrossRef]
    [Google Scholar]
  8. Chatlynne, L. G. & Ablashi, D. V. ( 1999; ). Seroepidemiology of Kaposi’s sarcoma-associated herpesvirus (KSHV). Seminars in Cancer Biology 9, 175-185.[CrossRef]
    [Google Scholar]
  9. Choi, J.-K., Lee, B.-S., Shim, S.-N., Li, M. & Jung, J. U. ( 2000; ). Identification of the novel K15 gene at the rightmost end of the Kaposi’s sarcoma-associated herpesvirus genome. Journal of Virology 74, 436-446.[CrossRef]
    [Google Scholar]
  10. Cook, P. M., Whitby, D., Calabro, M.-L., Luppi, M., Kakoola, D. N., Hjalgrim, H., Ariyoshi, K., Ensoli, B., Davison, A. J., Schulz, T. F. & the International Collaborative Group ( 1999; ). Variability and evolution of Kaposi’s sarcoma-associated herpesvirus in Europe and Africa. AIDS 13, 1165–1176.[CrossRef]
    [Google Scholar]
  11. Glenn, M., Rainbow, L., Auradé, F., Davison, A. & Schulz, T. F. ( 1999; ). Identification of a spliced gene from Kaposi’s sarcoma-associated herpesvirus encoding a protein with similarities to latent membrane proteins 1 and 2A of Epstein–Barr virus. Journal of Virology 73, 6953-6963.
    [Google Scholar]
  12. Hayward, G. S. ( 1999; ). KSHV strains: the origins and global spread of the virus. Seminars in Cancer Biology 9, 187-199.[CrossRef]
    [Google Scholar]
  13. Kasolo, F. C., Monze, M., Obel, N., Anderson, R. A., French, C. & Gompels, U. A. ( 1998; ). Sequence analysis of human herpesvirus-8 strains from both African human immunodeficiency virus-negative and -positive childhood endemic Kaposi’s sarcoma show a close relationship with strains identified in febrile children and high variation in the K1 glycoprotein. Journal of General Virology 79, 3055-3065.
    [Google Scholar]
  14. Lacoste, V., Judde, J.-G., Briere, J., Tulliez, M., Garin, B., Kassa-Kelembho, E., Morvan, J., Couppie, P., Clyti, E., Vila, J. F., Rio, B., Delmer, A., Mauclere, P. & Gessain, A. ( 2000a; ). Molecular epidemiology of human herpesvirus 8 in Africa: both B and A5 K1 genotypes, as well as the M and P genotypes of K14.1/K15 loci, are frequent and widespread. Virology 278, 60-74.[CrossRef]
    [Google Scholar]
  15. Lacoste, V., Kadyrova, E., Chistiakova, I., Gurtsevitch, V., Judde, J.-G. & Gessain, A. ( 2000b; ). Molecular characterization of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus-8 strains from Russia. Journal of General Virology 81, 1217-1222.
    [Google Scholar]
  16. Lagunoff, M., Majeti, R., Weiss, A. & Ganem, D. ( 1999; ). Deregulated signal transduction by the K1 gene product of Kaposi’s sarcoma-associated herpesvirus. Proceedings of the National Academy of Sciences, USA 96, 5704-5709.[CrossRef]
    [Google Scholar]
  17. Lee, H., Veazey, R., Williams, K., Li, M., Guo, J., Neipel, F., Fleckenstein, B., Lackner, A., Desrosiers, R. C. & Jung, J. U. ( 1998; ). Deregulation of cell growth by the K1 gene of Kaposi’s sarcoma-associated herpesvirus. Nature Medicine 4, 435-440.[CrossRef]
    [Google Scholar]
  18. Mayama, S., Cuevas, L. E., Sheldon, J., Omar, O. H., Smith, D. H., Okong, P., Silvel, B., Hart, C. A. & Schulz, T. F. ( 1998; ). Prevalence and transmission of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in Ugandan children and adolescents. International Journal of Cancer 77, 817-820.[CrossRef]
    [Google Scholar]
  19. Meng, Y.-X., Spira, T. J., Bhat, G. J., Birch, C. J., Druce, J. D., Edlin, B. R., Edwards, R., Gunthel, C., Newton, R., Stamey, F. R., Wood, C. & Pellett, P. E. ( 1999; ). Individuals from North America, Australasia, and Africa are infected with four different genotypes of human herpesvirus 8. Virology 261, 106-119.[CrossRef]
    [Google Scholar]
  20. Meng, Y.-X., Sata, T., Stamey, F. R., Voevodin, A., Katano, H., Koizumi, H., Deleon, M., De Cristofano, M. A., Galimberti, R. & Pellett, P. E. ( 2001; ). Molecular characterization of strains of Human herpesvirus 8 from Japan, Argentina and Kuwait. Journal of General Virology 82, 499-506.
    [Google Scholar]
  21. Neipel, F., Albrecht, J.-C. & Fleckenstein, B. ( 1997; ). Cell-homologous genes in the Kaposi’s sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? Journal of Virology 71, 4187-4192.
    [Google Scholar]
  22. Nicholas, J., Zong, J.-C., Alcendor, D. J., Ciufo, D. M., Poole, L. J., Sarisky, R. T., Chiou, C.-J., Zhang, X., Wan, X., Guo, H.-G., Reitz, M. S. & Hayward, G. S. ( 1998; ). Novel organizational features, captured cellular genes, and strain variability within the genome of KSHV/HHV8. Journal of the National Cancer Institute Monographs 23, 79-88.
    [Google Scholar]
  23. Poole, L. J., Zong, J.-C., Ciufo, D. M., Alcendor, D. J., Cannon, J. S., Ambinder, R., Orenstein, J. M., Reitz, M. S. & Hayward, G. S. ( 1999; ). Comparison of genetic variability at multiple loci across the genomes of the major subtypes of Kaposi’s sarcoma-associated herpesvirus reveals evidence for recombination and for two distinct types of open reading frame K15 alleles at the right-hand end. Journal of Virology 73, 6646-6660.
    [Google Scholar]
  24. Rainbow, L., Platt, G. M., Simpson, G. R., Sarid, R., Gao, S.-J., Stoiber, H., Herrington, C. S., Moore, P. S. & Schulz, T. F. ( 1997; ). The 222- and 234-kilodalton latent nuclear protein (LNA) of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. Journal of Virology 71, 5915-5921.
    [Google Scholar]
  25. Russo, J. J., Bohenzky, R. A., Chien, M.-C., Chen, J., Yan, M., Maddalena, D., Parry, J. P., Peruzzi, D., Edelman, I. S., Chang, Y. & Moore, P. S. ( 1996; ). Nucleotide sequence of Kaposi’s sarcoma-associated herpesvirus (HHV8). Proceedings of the National Academy of Sciences, USA 93, 14862-14867.[CrossRef]
    [Google Scholar]
  26. Sample, J., Liebowitz, D. & Kieff, E. ( 1989; ). Two related Epstein–Barr virus membrane proteins are encoded by separate genes. Journal of Virology 63, 2743-2753.
    [Google Scholar]
  27. Schulz, T. F. ( 1998; ). Kaposi’s sarcoma-associated herpesvirus (human herpesvirus-8). Journal of General Virology 79, 1573-1591.
    [Google Scholar]
  28. Simpson, G. R., Schulz, T. F., Whitby, D., Cook, P. M., Boshoff, C., Rainbow, L., Howard, M. R., Gao, S. J., Bohenzky, R. A., Simmonds, P., Lee, C., deRuiter, A., Hatzakism, A., Teddar, R. S., Wellar, I. V. D., Weiss, R. A. & Moore, P. S. ( 1996; ). Prevalence of Kaposi’s sarcoma-associated herpesvirus infection measured by antibodies to recombinant capsid protein and latent immunofluorescence antigen. Lancet 348, 1133-1138.[CrossRef]
    [Google Scholar]
  29. Staden, R. ( 1987; ). Computer handling of DNA sequencing projects. In Nucleic Acid and Protein Sequence Analysis: A Practical Approach , pp. 173-217. Edited by M. J. Bishop & C. J. Rawlings. Oxford:IRL Press.
  30. Staden, R., Beal, K. F. & Bonfield, J. K. ( 1998; ). The Staden package. Computer methods in molecular biology. In Bioinformatics Methods and Protocols , pp. 115-132. Edited by S. Misener & S. A. Krawetz. Totowa, NJ:Humana Press.
  31. Wabinga, H. R., Parkin, D. M., Wabwire-Mangen, F. & Mugerwa, J. W. ( 1993; ). Cancer in Kampala, Uganda, in 1989–91: changes in incidence in the era of AIDS. International Journal of Cancer 54, 26-36.[CrossRef]
    [Google Scholar]
  32. Whitby, D., Howard, M. R., Tenant-Flowers, M., Brink, N. S., Copas, A., Boshoff, C., Hatziouannou, T., Suggett, F. E. A., Aldam, D. M., Denton, A. S., Miller, R. F., Weller, I. V. D., Weiss, R. A., Tedder, R. S. & Schulz, T. F. ( 1995; ). Detection of Kaposi’s sarcoma-associated herpesvirus (KSHV) in peripheral blood of HIV-infected individuals predicts progression to Kaposi’s sarcoma. Lancet 346, 799-802.[CrossRef]
    [Google Scholar]
  33. Ziegler, J. L. & Katongole-Mbidde, E. ( 1996; ). KS in childhood: an analysis of 100 cases from Uganda and relationship to HIV infection. International Journal of Cancer 65, 200-203.[CrossRef]
    [Google Scholar]
  34. Zong, J.-C., Metroka, C., Reitz, M. S., Nicholas, J. & Hayward, G. S. ( 1997; ). Strain variability among Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8): evidence that a large cohort of United States AIDS patients may have been infected by a single common strain. Journal of Virology 71, 2505-2511.
    [Google Scholar]
  35. Zong, J.-C., Ciufo, D., Alcendor, D. J., Wan, X., Nicholas, J., Browning, P. J., Rady, P. L., Trying, S. K., Orenstein, J. M., Rabkin, C. S., Su, I.-J., Powell, K. F., Croxson, M., Foreman, K. E., Nickoloff, B. J., Alkan, S. & Hayward, G. S. ( 1999; ). High-level variability in the ORF-K1 membrane protein gene at the left end of the Kaposi’s sarcoma-associated herpesvirus genome defines four major virus subtypes and multiple variants or clades in different human populations. Journal of Virology 73, 4156-4170.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-10-2393
Loading
/content/journal/jgv/10.1099/0022-1317-82-10-2393
Loading

Data & Media loading...

Supplements

Supplementary Data 1

PDF

Supplementary Data 2

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error