1887

Abstract

The interaction between papillomavirus E1 and E2 proteins is essential for viral genome replication. Using both and assays to evaluate the regions of the two proteins necessary for the E1–E2 interaction, three independent interactions were identified for bovine papillomavirus E1: the N terminus of E1 (E1N, residues 1–311) interacts with the E2 transactivation domain (E2TAD) and the E2 DNA-binding domain (E2DBD) and the C terminus of E1 (E1C, residues 315–605) interacts with E2. Nine mutations within E1N were evaluated for their effects on E2 interaction. Five mutations eliminated interaction with the E2TAD; four of these were located within two previously identified conserved, hydrophilic regions, HR1 and HR3. Since HR1 and HR3 residues appear to comprise the origin of replication recognition element for E1, simultaneous interaction with the E2TAD during initiation complex formation would seem unlikely. Consistent with this inference is the fact that three of the five mutants defective for E2TAD binding exhibited wild-type levels of replication. The replication-positive phenotype of these mutants suggests that the E1N–E2TAD interaction is not essential for replication function and is probably involved in some other E1–E2 function, such as regulating transcription. Only one of the five mutations defective for E2TAD binding also prevented E2DBD interaction, indicating that the regions of E1N that interact with the E2TAD and the E2DBD are not identical. The ability of E1N to cooperatively interact with E2 bound to E2-binding site (E2BS) 11 versus E2BS12 was also examined, and cooperative binding was only observed when E2 was bound to E2BS12.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-10-2341
2001-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/10/0822341a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-10-2341&mimeType=html&fmt=ahah

References

  1. Benson J. D., Howley P. M. 1995; Amino-terminal domains of the bovine papillomavirus type 1 E1 and E2 proteins participate in complex formation. Journal of Virology 69:4364–4372
    [Google Scholar]
  2. Berg M., Stenlund A. 1997; Functional interactions between papillomavirus E1 and E2 proteins. Journal of Virology 71:3853–3863
    [Google Scholar]
  3. Blitz I. L., Laimins L. A. 1991; The 68-kilodalton E1 protein of bovine papillomavirus is a DNA binding phosphoprotein which associates with the E2 transcriptional activator in vitro . Journal of Virology 65:649–656
    [Google Scholar]
  4. Bonne-Andrea C., Santucci S., Clertant P., Tillier F. 1995; Bovine papillomavirus E1 protein binds specifically DNA polymerase α but not replication protein A. Journal of Virology 69:2341–2350
    [Google Scholar]
  5. Bonne-Andrea C., Tillier F., McShan G. D., Wilson V. G., Clertant P. 1997; Bovine papillomavirus type 1 DNA replication: the transcriptional activator E2 acts in vitro as a specificity factor. Journal of Virology 71:6805–6815
    [Google Scholar]
  6. Chen G., Stenlund A. 1998; Characterization of the DNA binding domain of the bovine papillomavirus replication initiator E1. Journal of Virology 72:2567–2576
    [Google Scholar]
  7. Chen G., Stenlund A. 2000; Two patches of amino acids on the E2 DNA-binding domain define the surface for interaction with E1. Journal of Virology 74:1506–1512
    [Google Scholar]
  8. Chow L. T., Broker T. R. 1994; Papillomavirus DNA replication. Intervirology 37:150–158
    [Google Scholar]
  9. Enemark E. J., Chen G., Vaughn D. E., Stenlund A., Joshua-Tor L. 2000; Crystal structure of the DNA binding domain of the replication initiation protein E1 from papillomavirus. Molecular Cell 6:149–158
    [Google Scholar]
  10. Ferran M. C., McBride A. A. 1998; Transient viral DNA replication and repression of viral transcription are supported by the C-terminal domain of the bovine papillomavirus type 1 E1 protein. Journal of Virology 72:796–801
    [Google Scholar]
  11. Fouts E. T., Yu X., Egelman E. H., Botchan M. R. 1999; Biochemical and electron microscopic image analysis of the hexameric E1 helicase. Journal of Biological Chemistry 274:4447–4458
    [Google Scholar]
  12. Gillette T. G., Borowiec J. A. 1998; Distinct roles of two binding sites for the bovine papillomavirus (BPV) E2 transactivator on BPV DNA replication. Journal of Virology 72:5735–5744
    [Google Scholar]
  13. Gillette T. G., Lusky M., Borowiec J. A. 1994; Induction of structural changes in the bovine papillomavirus type 1 origin of replication by the viral E1 and E2 proteins. Proceedings of the National Academy of Sciences, USA 91:8846–8850
    [Google Scholar]
  14. Gillitzer E., Chen G., Stenlund A. 2000; Separate domains in E1 and E2 proteins serve architectural and productive roles for cooperative DNA binding. EMBO Journal 19:3069–3079
    [Google Scholar]
  15. Giri I., Yaniv M. 1988; Structural and mutational analysis of E2 trans-activating proteins of papillomaviruses reveals three distinct functional domains. EMBO Journal 7:2823–2829
    [Google Scholar]
  16. Gonzalez A., Bazaldua-Hernandez C., West M., Woytek K., Wilson V. G. 2000; Identification of a short, hydrophilic amino acid sequence critical for origin recognition by the bovine papillomavirus E1 protein. Journal of Virology 74:245–253
    [Google Scholar]
  17. Han Y. F., Loo Y. M., Militello K. T., Melendy T. 1999; Interactions of the papovavirus DNA replication initiator proteins, bovine papillomavirus type 1 E1 and simian virus 40 large T antigen, with human replication protein A. Journal of Virology 73:4899–4907
    [Google Scholar]
  18. Haugen T. H., Turek L. P., Mercurio F. M., Cripe T. P., Olson B. J., Anderson R. D., Seidl D., Karin M., Schiller J. 1988; Sequence-specific and general transcriptional activation by the bovine papillomavirus-1 E2 trans-activator require an N-terminal amphipathic helix-containing E2 domain. EMBO Journal 7:4245–4253
    [Google Scholar]
  19. Holt S. E., Schuller G., Wilson V. G. 1994; DNA binding specificity of the bovine papillomavirus E1 protein is determined by sequences contained within an 18-base-pair inverted repeat element at the origin of replication. Journal of Virology 68:1094–1102
    [Google Scholar]
  20. Le Moal M. A., Yaniv M., Thierry F. 1994; The bovine papillomavirus type 1 (BPV1) replication protein E1 modulates transcription activation by interacting with BPV1 E2. Journal of Virology 68:1085–1093
    [Google Scholar]
  21. Leng X., Ludesmeyers J. H., Wilson V. G. 1997; Isolation of an amino-terminal region of bovine papillomavirus type 1 E1 protein that retains origin binding and E2 interaction capacity. Journal of Virology 71:848–852
    [Google Scholar]
  22. Lusky M., Fontane E. 1991; Formation of the complex of bovine papillomavirus E1 and E2 proteins is modulated by E2 phosphorylation and depends upon sequences within the carboxyl terminus of E1. Proceedings of the National Academy of Sciences, USA 88:6363–6367
    [Google Scholar]
  23. Lusky M., Hurwitz J., Seo Y.-S. 1994; The bovine papillomavirus E2 protein modulates the assembly of but is not stably maintained in a replication-competent multimeric E1-replication origin complex. Proceedings of the National Academy of Sciences, USA 91:8895–8899
    [Google Scholar]
  24. McBride A. A., Byrne J. C., Howley P. M. 1989; E2 polypeptides encoded by bovine papillomavirus type 1 form dimers through the common carboxyl-terminal domain: transactivation is mediated by the conserved amino-terminal domain. Proceedings of the National Academy of Sciences, USA 86:510–514
    [Google Scholar]
  25. McBride A. A., Romanczuk H., Howley P. M. 1991; The papillomavirus E2 regulatory proteins. Journal of Biological Chemistry 266:18411–18414
    [Google Scholar]
  26. McShan G. D., Wilson V. G. 1997; Reconstitution of a functional bovine papillomavirus type 1 origin of replication reveals a modular tripartite replicon with an essential AT-rich element. Virology 237:198–208
    [Google Scholar]
  27. McShan G., Wilson V. G. 2000; Contribution of bovine papillomavirus type 1 E1 protein residue 48 to replication function. Journal of General Virology 81:1995–2004
    [Google Scholar]
  28. Mohr I. J., Clark R., Sun S., Androphy E. J., MacPherson P., Botchan M. R. 1990; Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science 250:1694–1699
    [Google Scholar]
  29. Moscufo N., Sverdrup F., Breiding D. E., Androphy E. J. 1999; Two distinct regions of the BPV-1 E1 replication protein interact with the activation domain of E2. Virus Research 65:141–154
    [Google Scholar]
  30. Park P., Copeland W., Yang L., Wang T., Botchan M. R., Mohr I. J. 1994; The cellular DNA polymerase α-primase is required for papillomavirus DNA replication and associates with the viral E1 helicase. Proceedings of the National Academy of Sciences, USA 91:8700–8704
    [Google Scholar]
  31. Parker L. M., Harris S., Gossen M., Botchan M. R. 2000; The bovine papillomavirus E2 transactivator is stimulated by the E1 initiator through the E2 activation domain. Virology 270:430–443
    [Google Scholar]
  32. Rangasamy D., Wilson V. G. 2000; Bovine papillomavirus E1 protein is sumoylated by the host cell Ubc9 protein. Journal of Biological Chemistry 275:30487–30495
    [Google Scholar]
  33. Sanders C. M., Stenlund A. 1998; Recruitment and loading of the E1 initiator protein: an ATP-dependent process catalysed by a transcription factor. EMBO Journal 17:7044–7055
    [Google Scholar]
  34. Sanders C. M., Stenlund A. 2000; Transcription factor-dependent loading of the E1 initiator reveals modular assembly of the papillomavirus origin melting complex. Journal of Biological Chemistry 275:3522–3534
    [Google Scholar]
  35. Sarafi T. R., McBride A. A. 1995; Domains of the BPV-1 E1 replication protein required for origin-specific DNA binding and interaction with the E2 transactivator. Virology 211:385–396
    [Google Scholar]
  36. Sedman J., Stenlund A. 1995; Co-operative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro . EMBO Journal 14:6218–6228
    [Google Scholar]
  37. Sedman J., Stenlund A. 1996; The initiator protein E1 binds to the bovine papillomavirus origin of replication as a trimeric ring-like structure. EMBO Journal 15:5085–5092
    [Google Scholar]
  38. Sedman J., Stenlund A. 1998; The papillomavirus E1 protein forms a DNA-dependent hexameric complex with ATPase and DNA helicase activities. Journal of Virology 72:6893–6897
    [Google Scholar]
  39. Seo Y. S., Müller F., Lusky M., Hurwitz J. 1993; Bovine papillomavirus (BPV)-encoded E1 protein contains multiple activities required for BPV DNA replication. Proceedings of the National Academy of Sciences, USA 90:702–706
    [Google Scholar]
  40. Spalholz B. A., Yang Y. C., Howley P. M. 1985; Transactivation of a bovine papillomavirus transcriptional regulatory element by the E2 gene product. Cell 42:183–191
    [Google Scholar]
  41. Thorner L. K., Lim D. A., Botchan M. R. 1993; DNA-binding domain of bovine papillomavirus type 1 E1 helicase: structural and functional aspects. Journal of Virology 67:6000–6014
    [Google Scholar]
  42. Ustav M., Stenlund A. 1991; Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames. EMBO Journal 10:449–457
    [Google Scholar]
  43. Wilson V. G., Ludes-Meyers J. 1991; A bovine papillomavirus E1-related protein binds specifically to bovine papillomavirus DNA. Journal of Virology 65:5314–5322
    [Google Scholar]
  44. Yang L., Mohr I., Fouts E., Lim D. A., Nohaile M., Botchan M. 1993; The E1 protein of bovine papillomavirus 1 is an ATP-dependent DNA helicase. Proceedings of the National Academy of Sciences, USA 90:5086–5090
    [Google Scholar]
  45. Yasugi T., Benson J. D., Sakai H., Vidal M., Howley P. M. 1997; Mapping and characterization of the interaction domains of human papillomavirus type 16 E1 and E2 proteins. Journal of Virology 71:891–899
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-10-2341
Loading
/content/journal/jgv/10.1099/0022-1317-82-10-2341
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error