Characterization of chimeric enzymes between caprine arthritis–encephalitis virus, maedi–visna virus and human immunodeficiency virus type 1 integrases expressed in Free

Abstract

In order to investigate the functions of the three putative lentiviral integrase (IN) protein domains on viral DNA specificity and target site selection, enzymatically active chimeric enzymes were constructed using the three wild-type IN proteins of caprine arthritis–encephalitis virus (CAEV), maedi–visna virus (MVV) and human immunodeficiency virus type 1 (HIV-1). The chimeric enzymes were expressed in , purified by affinity chromatography and analysed for IN-specific endonuclease and integration activities on various DNA substrates. Of the 21 purified chimeric IN proteins constructed, 20 showed distinct site-specific cleavage activity with at least one substrate and six were able to catalyse an efficient integration reaction. Analysis of the chimeric IN proteins revealed that the central domain together with the C terminus determines the activity and substrate specificity of the enzyme. The N terminus appears to have no considerable influence. Furthermore, an efficient integration activity of CAEV wild-type IN was successfully demonstrated after detailed characterization of the reaction conditions that support optimal enzyme activities of CAEV IN. Also, under the same assay conditions, MVV and HIV-1 IN proteins exhibited endonuclease and integration activities, an indispensable prerequisite of domain-swapping experiments. Thus, the following report presents a detailed characterization of the activities of CAEV IN as well as the analysis of functional chimeric lentiviral IN proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-1-139
2001-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/1/0820139a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-1-139&mimeType=html&fmt=ahah

References

  1. Ansari-Lari M. A., Donehower L. A., Gibbs R. A. 1995; Analysis of human immunodeficiency virus type 1 integrase mutants. Virology 211:332–335
    [Google Scholar]
  2. Asante-Appiah E., Skalka A. M. 1999; HIV-1 integrase: structural organization, conformational changes and catalysis. Advances in Virus Research 52:351–369
    [Google Scholar]
  3. Barsov E. V., Huber W. E., Marcotrigiano J., Clark P. K., Clark A. D., Arnold E., Hughes S. H. 1996; Inhibition of human immunodeficiency virus type 1 integrase by the Fab fragment of a specific monoclonal antibody suggests that different multimerization states are required for different enzymatic functions. Journal of Virology 70:4484–4494
    [Google Scholar]
  4. Burke C. J., Sanyal G., Bruner M. W., Ryan J. A., Lafemina R. L., Robbins H. L., Zeft A. S., Middaugh C. R., Cordingley M. G. 1992; Structural implications of spectroscopic characterization of a putative zinc finger peptide from HIV-1 integrase. Journal of Biological Chemistry 267:9639–9644
    [Google Scholar]
  5. Bushman F. D., Craigie R. 1991; Activities of human immunodeficiency virus (HIV) integration protein in vitro : specific cleavage and integration of HIV DNA. Proceedings of the National Academy of Sciences, USA 88:1339–1343
    [Google Scholar]
  6. Bushman F. D., Fujiwara T., Craigie R. 1990; Retroviral DNA integration directed by HIV integration protein in vitro . Science 249:1555–1558
    [Google Scholar]
  7. Bushman F. D., Engelman A., Palmer I., Wingfield P., Craigie R. 1993; Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. Proceedings of the National Academy of Sciences, USA 90:3428–3432
    [Google Scholar]
  8. Craigie R., Fujiwara T., Bushman F. 1990; The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro . Cell 62:829–837
    [Google Scholar]
  9. Dildine S. L., Resress J., Jolly D., Sandmeyer S. B. 1998; A chimeric Ty3/Moloney murine leukemia virus integrase protein is active in vivo . Journal of Virology 72:4297–4307
    [Google Scholar]
  10. Drelich M., Wilhelm R., Mous J. 1992; Identification of amino acid residues critical for endonuclease and integration activities of HIV-1 IN protein in vitro . Virology 188:459–468
    [Google Scholar]
  11. Dyda F., Hickman A. B., Jenkins T. M., Engelman A., Craigie R., Davies D. R. 1994; Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266:1981–1985
    [Google Scholar]
  12. Engelman A., Craigie R. 1992; Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro . Journal of Virology 66:6361–6369
    [Google Scholar]
  13. Engelman A., Mizuuchi K., Craigie R. 1991; HIV-1 integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67:1211–1221
    [Google Scholar]
  14. Engelman A., Bushman F. D., Craigie R. 1993; Identification of discrete functional domains of HIV-1 integrase and their organisation within an active multimeric complex. EMBO Journal 12:3269–3275
    [Google Scholar]
  15. Engelman A., Hickman A. B., Craigie R. 1994; The core and carboxyl-terminal domains of the integrase protein of human immunodeficiency virus type 1 each contribute to nonspecific DNA binding. Journal of Virology 68:5911–5917
    [Google Scholar]
  16. Engelman A., Englund G., Orenstein J. M., Martin M. A., Craigie R. 1995; Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. Journal of Virology 69:2729–2736
    [Google Scholar]
  17. Englund G., Theodore T. S., Freed E. O., Engelman A., Martin M. A. 1995; Integration is required for productive infection of monocyte-derived macrophages by human immunodeficiency virus type 1. Journal of Virology 69:3216–3219
    [Google Scholar]
  18. Esposito D., Craigie R. 1998; Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein–DNA interaction. EMBO Journal 17:5832–5843
    [Google Scholar]
  19. Esposito D., Craigie R. 1999; HIV integrase structure and function. Advances in Virus Research 52:319–333
    [Google Scholar]
  20. Holleman A. F., Wiberg E. 1984 In Lehrbuch der Anorganischen Chemie, 91–100: Verbessorte und Stark Erweiterte Auflage Von Nils Wiberg pp 1110–1117 Berlin & New York: Walter De Gruyter;
    [Google Scholar]
  21. Holler T. P., Foltin S. K., Ye Q.-Z., Hupe D. J. 1993; HIV-1 integrase expressed in Escherichia coli from a synthetic gene. Gene 136:323–328
    [Google Scholar]
  22. Horton R. M., Ho S. N., Pullen J. K., Hunt H. D., Cai Z., Pease L. R. 1993; Gene splicing by overlap extension. Methods in Enzymology 217:270–279
    [Google Scholar]
  23. Jenkins T. M., Engelman A., Ghirlando R., Craigie R. 1996; A soluble active mutant of HIV-1 integrase: multimerization involves the core and C-terminal domains. Journal of Biological Chemistry 271:7712–7718
    [Google Scholar]
  24. Johnson M. S., McClure M. A., Feng D.-F., Gray J., Doolittle R. F. 1986; Computer analysis of retroviral pol genes: assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. Proceedings of the National Academy of Sciences, USA 83:7648–7652
    [Google Scholar]
  25. Kalpana G. V., Goff S. P. 1993; Genetic analysis of homomeric interactions of human immunodeficiency virus type 1 integrase using the yeast two-hybrid system. Proceedings of the National Academy of Sciences, USA 90:10593–10597
    [Google Scholar]
  26. Katz R. A., Merkel G., Kulkosky J., Leis J., Skalka A. M. 1990; The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro . Cell 63:87–95
    [Google Scholar]
  27. Katzman M., Sudol M. 1995; Mapping domains of retroviral integrase responsible for viral DNA specificity and target site selection by analysis of chimeras between human immunodeficiency virus type 1 and visna virus integrases. Journal of Virology 69:5687–5696
    [Google Scholar]
  28. Katzman M., Sudol M. 1998; Mapping viral DNA specificity to the central region of integrase by using functional human immunodeficiency virus type 1/visna virus chimeric proteins. Journal of Virology 72:1744–1753
    [Google Scholar]
  29. Katzman M., Katz R. A., Skalka A. M., Leis J. 1989; The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. Journal of Virology 63:5319–5327
    [Google Scholar]
  30. Khan E., Mack J. P. G., Katz R. A., Kulkosky J., Skalka A. M. 1991; Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Research 19:851–860
    [Google Scholar]
  31. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  32. LaFemina R. L., Callahan P. L., Cordingley M. G. 1991; Substrate specificity of recombinant human immunodeficiency virus integrase protein. Journal of Virology 65:5624–5630
    [Google Scholar]
  33. LaFemina R. L., Schneider C. L., Robbins H. L., Callahan P. L., LeGrow K., Roth E., Schleif W. A., Emini E. A. 1992; Requirement of active human immunodeficiency virus type 1 integrase enzyme for productive infection of human T-lymphoid cells. Journal of Virology 66:7414–7419
    [Google Scholar]
  34. Pahl A., Flügel R. M. 1993; Endonucleolytic cleavages and DNA-joining activities of the integration protein of human foamy virus. Journal of Virology 67:5426–5434
    [Google Scholar]
  35. Puras-Lutzke R. A., Vink C., Plasterk R. H. A. 1994; Characterization of the minimal DNA-binding domain of the HIV integrase protein. Nucleic Acids Research 22:4125–4131
    [Google Scholar]
  36. Sakei H., Kawamura M., Sakuragi J.-I., Sakuragi S., Shibata E., Ishimoto A., Ono N., Ueda S., Adachi A. 1993; Integration is essential for efficient gene expression of human immunodeficiency virus type 1. Journal of Virology 67:1169–1174
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  38. Sanger F., Nicklein S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74:5463–5467
    [Google Scholar]
  39. Sherman P. A., Dickson M. L., Fyfe J. A. 1992; Human immunodeficiency virus type 1 integration protein: DNA sequence requirements for cleaving and joining reactions. Journal of Virology 66:3593–3601
    [Google Scholar]
  40. Shibagaki Y., Holmes M. L., Appa R. S., Chow S. A. 1997; Characterization of feline immunodeficiency virus integrase and analysis of functional domains. Virology 230:1–10
    [Google Scholar]
  41. Störmann K. D., Schlecht M. C., Pfaff E. 1995; Comparative studies of bacterially expressed integrase proteins of caprine arthritis–encephalitis virus, maedi–visna virus and human immunodeficiency virus type 1. Journal of General Virology 76:1651–1663
    [Google Scholar]
  42. Taddeo B., Carlini F., Verani P., Engelman A. 1996; Reversion of a human immunodeficiency virus type 1 integrase mutant at a second site restores enzyme function and virus infectivity. Journal of Virology 70:8277–8284
    [Google Scholar]
  43. Tasara T., Amacker M., Hubscher U. 1999; Intramolecular chimeras of the p51 subunit between HIV-1 and FIV reverse transcriptases suggest a stabilizing function for the p66 subunit in the heterodimeric enzyme. Biochemistry 38:1633–1642
    [Google Scholar]
  44. Van Gent D. C., Oude Groeneger A. A. M., Plasterk R. H. A. 1992; Mutational analysis of the integrase protein of human immunodeficiency virus type 2. Proceedings of the National Academy of Sciences, USA 89:9598–9602
    [Google Scholar]
  45. Van Gent D. C., Vink C., Oude Groeneger A. A. M., Plasterk R. H. A. 1993; Complementation between HIV integrase proteins mutated in different domains. EMBO Journal 12:3261–3267
    [Google Scholar]
  46. Vincent K. A., Ellison V., Chow S. A., Brown P. O. 1993; Characterization of human immunodeficiency virus type 1 integrase expressed in Escherichia coli and analysis of variants with amino-terminal mutations. Journal of Virology 67:425–437
    [Google Scholar]
  47. Vink C., Plasterk R. H. A. 1993; The human immunodeficiency virus integrase protein. Trends in Genetics 9:433–437
    [Google Scholar]
  48. Vink C., Oude Groeneger A. A. M., Plasterk R. H. A. 1993; Identification of the catalytic and DNA-binding region of the human immunodeficiency virus type 1 integrase protein. Nucleic Acids Research 21:1419–1425
    [Google Scholar]
  49. Wiskerchen M., Muesing M. A. 1995; Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells. Journal of Virology 69:376–386
    [Google Scholar]
  50. Wlodawer A. 1999; Crystal structures of catalytic core domains of retroviral integrases and role of divalent cations in enzymatic activity. Advances in Virus Research 52:335–350
    [Google Scholar]
  51. Yagil E., Dorgai L., Weisber R. A. 1995; Identifying determinants of recombination specificity: construction and characterization of chimeric bacteriophage integrases. Journal of Molecular Biology 252:163–177
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-1-139
Loading
/content/journal/jgv/10.1099/0022-1317-82-1-139
Loading

Data & Media loading...

Most cited Most Cited RSS feed