1887

Abstract

We have analysed hepatitis C virus (HCV) RNAs in an RNA degradation assay. We found that the 3′ end of positive polarity HCV RNA is sensitive to cytosolic RNases whereas the 3′ end of negative polarity HCV RNA is relatively stable. Interaction of the HCV 3′ untranslated region with the cellular La protein prevented premature degradation of the HCV RNA. One may speculate that HCV RNAs interact with La protein in infected cells to prevent premature degradation of the viral RNAs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-1-113
2001-01-01
2020-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/1/0820113a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-1-113&mimeType=html&fmt=ahah

References

  1. Binder R., Horowitz J. A., Basilion J. P., Koeller R. D., Harford J. B.. 1994; Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage within the 3′ UTR and does not involve poly(A) tail shortening. EMBO Journal13:1969–1980
    [Google Scholar]
  2. Brewer G.. 1999; Evidence for a 3′–5′ decay pathway for c- myc mRNA in mammalian cells. Journal of Biological Chemistry274:16174–16179
    [Google Scholar]
  3. Brewer G., Ross J.. 1988; Poly(A) shortening and degradation of the 3′ A+U-rich sequences of human c- myc mRNA in a cell-free system. Molecular and Cellular Biology8:1697–1708
    [Google Scholar]
  4. Bukh J., Miller R. H., Purcell R. H.. 1996; Biology and genetic heterogeneity of hepatitis C virus. Clinical & Experimental Rheumatology13:3–7
    [Google Scholar]
  5. Chung R. T., Kaplan L. M.. 1999; Heterogeneous nuclear ribonucleoprotein I (hnRNP-I/PTB) selectively binds the conserved 3′ terminus of hepatitis C viral RNA. Biochemical and Biophysical Research Communications254:351–362
    [Google Scholar]
  6. Clark B.. 1997; Molecular virology of hepatitis C virus. Journal of General Virology78:2397–2410
    [Google Scholar]
  7. Coller J. M., Gray N. K., Wickens M. P.. 1998; mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation. Genes & Development12:3226–3235
    [Google Scholar]
  8. Dignam J. D., Lebovitz R. M., Roeder R. G.. 1983; Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Research11:1475–1489
    [Google Scholar]
  9. Ford L. P., Wilusz J.. 1999; An in vitro system using HeLa cytoplasmic extracts that reproduces regulated mRNA stability. Methods17:21–27
    [Google Scholar]
  10. Ford L. P., Watson J., Keene J. D., Wilusz J.. 1999; ELAV proteins stabilize deadenylated intermediates in a novel in vitro mRNA deadenylation/degradation system. Genes & Development13:188–201
    [Google Scholar]
  11. Gontarek R. R., Gutshell L. L., Herold K. M., Tsai J., Sathe G. M., Mao J., Prescott C., Del Vechio A. M.. 1999; hnRNP C and polypyrimidine tract-binding protein specifically interact with the pyrimidine-rich region in within the 3′NTR of the HCV RNA genome. Nucleic Acids Research27:1457–1463
    [Google Scholar]
  12. Heise T., Guidotti L. G., Chisari F. V.. 1999; La autoantigen specifically recognizes a predicted stem–loop in hepatitis B virus RNA. Journal of Virology73:5767–5776
    [Google Scholar]
  13. Hofsteenge J., Vicentini A., Zelenko O.. 1998; Ribonuclease 4, an evolutionarily highly conserved member of the superfamily. Cellular and Molecular Life Sciences54:804–810
    [Google Scholar]
  14. Houghton M.. 1996; Hepatitis C viruses. In Fields Virology pp1035–1058 Edited by Fields B. N., Knipe D. M., Howley P. M.. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  15. Ito T., Lai M. M. C.. 1997; Determination of the secondary structure of and cellular proteins binding to the 3′-untranslated region of the hepatitis C virus RNA genome. Journal of Virology71:8698–8706
    [Google Scholar]
  16. Ito T., Tahara S. M., Lai M. M. C.. 1998; The 3′-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. Journal of Virology72:8789–8796
    [Google Scholar]
  17. Jacobs J. S., Anderson A. R., Parker R. P.. 1998; The 3′ to 5′ degradation of yeast mRNA is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucelases of the exosome complex. EMBO Journal17:1497–1506
    [Google Scholar]
  18. Lai M. M. C.. 1998; Cellular factors in the transcription of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology244:1–12
    [Google Scholar]
  19. Lemon S. M., Honda M.. 1997; Internal ribosome entry site within the RNA genomes of hepatitis C virus and other flaviviruses. Seminars in Virology8:274–288
    [Google Scholar]
  20. Luo G.. 1999; Cellular proteins bind to the poly(U) tract of the 3′ untranslated region of hepatitis C virus genome. Virology256:105–118
    [Google Scholar]
  21. McLaren R. S., Caruccio N., Ross F.. 1997; Human La protein: a stabilizer of histone mRNA. Molecular and Cellular Biology17:3028–3036
    [Google Scholar]
  22. Mitchell P., Petfalski E., Shevchenko A., Mann M., Tollervey D.. 1997; The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′–5′ exoribonucleases. Cell91:457–466
    [Google Scholar]
  23. Pannone B. K., Xue D., Wolin S. L.. 1998; A role for the yeast La protein in U6 snRNP assembly: evidence that the La protein is a molecular chaperone for RNA polymerase III transcripts. EMBO Journal17:7442–7453
    [Google Scholar]
  24. Rice C. M.. 1996; Flaviviridae : The viruses and their replication. In Fields Virology pp931–959 Edited by Fields B. N., Knipe D. M., Howley P. M.. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  25. Ross J.. 1995; mRNA stability in mammalian cells. Microbiological Reviews59:15–95
    [Google Scholar]
  26. Rutjes S. A., van der Heiden A., Utz P. J., van Veenroij W., Pruijn G. J. M.. 1999; Rapid nucleolytic degradation of the small cytoplasmic Y RNAs during apoptosis. Journal of Biological Chemistry274:24799–24807
    [Google Scholar]
  27. Sachs A. B.. 1997; Starting at the beginning middle and end: translation inititation in eukaryotes. Cell89:831–838
    [Google Scholar]
  28. Sokolowski M., Zhao C., Tan W., Schwartz S.. 1997; AU-rich mRNA instability elements on HPV-1 late mRNAs and c- fos mRNAs interact with the same cellular factors. Oncogene15:2303–2319
    [Google Scholar]
  29. Sorrentino S., Libonati M.. 1997; Structure–function relationship in human ribonucleases: main distinctive features of the major RNase types. FEBS Letters404:1–5
    [Google Scholar]
  30. Spångberg K., Schwartz S.. 1999; Poly(C) binding protein interacts with the hepatitis C virus 5′ untranslated region. Journal of General Virology80:1371–1376
    [Google Scholar]
  31. Spångberg K., Goobar-Larsson L., Wahren M., Schwartz S.. 1999; The La protein from human liver cells interacts specifically with the U-rich region in the hepatitis C virus 3′ untranslated region. Journal of Human Virology2:296–307
    [Google Scholar]
  32. Tan W., Schwartz S.. 1995; The Rev protein of human immunodeficiency virus type 1 counteracts the effect of an AU-rich negative element in the human papillomavirus type 1 late 3′ untranslated region. Journal of Virology69:2932–2945
    [Google Scholar]
  33. Tsuchihara K., Tanaka T., Hijikata M., Kuge S., Toyoda H., Nomoto A., Yamamoto N., Shimotohno K.. 1997; Specific interaction of polypyrimidine tract-binding protein with the extreme 3′-terminal structure of the hepatitis C virus genome, the 3′X. Journal of Virology71:6720–6726
    [Google Scholar]
  34. Wang C., Siddiqui A.. 1995; Structure and function of the hepatitis C virus internal ribosome entry site. Current Topics in Microbiology and Immunology203:99–115
    [Google Scholar]
  35. Wennborg A., Sohlberg B., Angerer D., Klein G., von Gabin A.. 1995; A human RNase E-like activity that cleaves RNA sequences involved in mRNA stability control. Proceedings of the National Academy of Sciences, USA92:7322–7326
    [Google Scholar]
  36. Wickens M., Anderson P., Jackson R. J.. 1997; Life and death in the cytoplasm: messages from the 3′ end. Current Opinion in Genetics & Development7:220–232
    [Google Scholar]
  37. Yamada N., Tanihara K., Takada A., Yorihuzi T., Tsutsumi M., Shimomura H., Tsuji T., Date M.. 1996; Genetic organization and diversity of the 3′ noncoding region of the hepatitis C virus genome. Virology223:255–261
    [Google Scholar]
  38. Yanagi M., Purcell R. H., Emerson S. U., Bukh J.. 1997; Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. Proceedings of the National Academy of Sciences, USA94:8738–8743
    [Google Scholar]
  39. Zhao C., Tan W., Sokolowski M., Schwartz S.. 1996; Identification of nuclear and cytoplasmic factors that interact specifically with and AU-rich, cis-acting inhibitory sequence in the 3′ untranslated region of human papillomavirus type 1 late mRNAs. Journal of Virology70:3659–3667
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-1-113
Loading
/content/journal/jgv/10.1099/0022-1317-82-1-113
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error