Adeno-associated virus (AAV)-3-based vectors transduce haematopoietic cells not susceptible to transduction with AAV-2-based vectors Free

Abstract

Although adeno-associated virus (AAV)-2 has a broad tissue-host range and can transduce a wide variety of tissue types, some cells, such as erythro-megakaryoblastoid cells, are non-permissive and appear to lack the AAV-2 receptor. However, limited studies have been reported with the related dependovirus AAV-3. We have previously cloned this virus, characterized its genome and produced an infectious clone. In this study, the gene for green fluorescent protein (GFP) was inserted into AAV-2- and AAV-3-based plasmids and recombinant viruses were produced. These viruses were then used to transduce haematopoietic cells and the transduction efficiencies were compared. In contrast to recombinant (r) AAV-2, rAAV-3 successfully transduced erythroid and megakaryoblastoid cells, although rAAV-2 was superior in transduction of lymphocyte-derived cell lines. Recently, it was reported that heparan sulphate can act as a receptor of AAV-2. The infectivity of rAAV-2 and rAAV-3 was tested with mutant cell lines of Chinese hamster ovary cells that were defective for heparin or heparan sulphate expression on the cell surface. There was no correlation between the ability of rAAV-2 or rAAV-3 to infect cells and the cell surface expression of heparan sulphate and, although heparin blocked both rAAV-2 and rAAV-3 transduction, the ID of rAAV-3 was higher than that of rAAV-2. In addition, virus-binding overlay assays indicated that AAV-2 and AAV-3 bound different membrane proteins. These results suggest not only that there are different cellular receptors for AAV-2 and AAV-3, but that rAAV-3 vectors may be preferred for transduction of some haematopoietic cell types.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-8-2077
2000-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/8/0812077a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-8-2077&mimeType=html&fmt=ahah

References

  1. Alexander I. E., Russell D. W., Miller A. D. 1997; Transfer of contaminants in adeno-associated virus vector stocks can mimic transduction and lead to artifactual results. Human Gene Therapy 8:1911–1920
    [Google Scholar]
  2. Arella M., Garzon S., Bergeron J., Tijssen P. 1990; Physicochemical properties, production, and purification of parvoviruses. In Handbook of Parvoviruses pp 11–30 Edited by Tijssen P. Boca Raton, FL: CRC Press;
    [Google Scholar]
  3. Bame K. J., Esko J. D. 1989; Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N -sulfotransferase. Journal of Biological Chemistry 264:8059–8065
    [Google Scholar]
  4. Berns K. I., Bergoin M., Bloom M., Lederman M., Muzyczka N., Siegl G., Tal J., Tattersall P. 1995; Family Parvoviridae . In Virus Taxonomy. Sixth Report of the International Committee on Taxonomy of Viruses pp 169–178 Edited by Murphy F. A., Fauquet C. M., Bishop D. H. L., Ghabrial S. A., Jarvis A. W., Martelli G. P., Mayo M. A., Summers M. D. Vienna & New York: Springer-Verlag;
    [Google Scholar]
  5. Chatterjee S., Li W., Wong C. A., Fisher-Adams G., Lu D., Guha M., Macer J. A., Forman S. J., Wong K. K. Jr 1999; Transduction of primitive human marrow and cord blood-derived hematopoietic progenitor cells with adeno-associated virus vectors. Blood 93:1882–1894
    [Google Scholar]
  6. Chiorini J. A., Yang L., Liu Y., Safer B., Kotin R. M. 1997; Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. Journal of Virology 71:6823–6833
    [Google Scholar]
  7. Chiorini J. A., Kim F., Yang L., Kotin R. M. 1999; Cloning and characterization of adeno-associated virus type 5. Journal of Virology 73:1309–1319
    [Google Scholar]
  8. Erles K., Sebokova P., Schlehofer J. R. 1999; Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV. Journal of Medical Virology 59:406–411
    [Google Scholar]
  9. Esko J. D., Stewart T. E., Taylor W. H. 1985; Animal cell mutants defective in glycosaminoglycan biosynthesis. Proceedings of the National Academy of Sciences USA: 82:3197–3201
    [Google Scholar]
  10. Esko J. D., Rostand K. S., Weinke J. L. 1988; Tumor formation dependent on proteoglycan biosynthesis. Science 241:1092–1096
    [Google Scholar]
  11. Fisher-Adams G., Wong K. K. Jr, Podsakoff G., Forman S. J., Chatterjee S. 1996; Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction. Blood 88:492–504
    [Google Scholar]
  12. Goodman S., Xiao X., Donahue R. E., Moulton A., Miller J., Walsh C., Young N. S., Samulski R. J., Nienhuis A. W. 1994; Recombinant adeno-associated virus-mediated gene transfer into hematopoietic progenitor cells. Blood 84:1492–1500
    [Google Scholar]
  13. Itou T., Miyamura K., Abe A., Emi N., Tanimoto M., Terasaki H., Shimadzu M., Saito H. 1998; Recombinant adeno-associated virus-mediated gene transfer into human leukemia cell lines. International Journal of Hematology 67:27–35
    [Google Scholar]
  14. Komatsu N., Yamamoto M., Fujita H., Miwa A., Hatake K., Endo T., Okano H., Katsube T., Fukumaki Y., Sassa S., Miura Y. 1993; Establishment and characterization of an erythropoietin-dependent subline, UT-7/Epo, derived from human leukemia cell line, UT-7. Blood 82:456–464
    [Google Scholar]
  15. Lebkowski J. S., McNally M. M., Okarma T. B., Lerch L. B. 1988; Adeno-associated virus: a vector system for efficient introduction and integration of DNA into a variety of mammalian cell types. Molecular and Cellular Biology 8:3988–3996
    [Google Scholar]
  16. Leruez M., Pallier C., Vassias I., Elouet J. F., Romeo P., Morinet F. 1994; Differential transcription, without replication, of non-structural and structural genes of human parvovirus B19 in the UT7/EPO cell line as demonstrated by in situ hybridization. Journal of General Virology 75:1475–1478
    [Google Scholar]
  17. Mizukami H., Young N. S., Brown K. E. 1996; Adeno-associated virus type 2 binds to a 150-kilodalton cell membrane glycoprotein. Virology 217:124–130
    [Google Scholar]
  18. Monahan P. E., Samulski R. J., Tazelaar J., Xiao X., Nichols T. C., Bellinger D. A., Read M. S., Walsh C. E. 1998; Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Therapy 5:40–49
    [Google Scholar]
  19. Muramatsu S., Mizukami H., Young N. S., Brown K. E. 1996; Nucleotide sequencing and generation of an infectious clone of adeno-associated virus 3. Virology 221:208–217
    [Google Scholar]
  20. Parks W. P., Boucher D. W., Melnick J. L., Taber L. H., Yow M. D. 1970; Seroepidemiological and ecological studies of the adenovirus-associated satellite viruses. Infection and Immunity 2:716–722
    [Google Scholar]
  21. Podsakoff G., Wong K. K. Jr, Chatterjee S. 1994; Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors. Journal of Virology 68:5656–5666
    [Google Scholar]
  22. Ponnazhagan S., Wang X.-S., Woody M. J., Luo F., Kang L. Y., Nallari M. L., Munshi N. C., Zhou S. Z., Srivastava A. 1996; Differential expression in human cells from promoter p6 of human parvovirus B19 following plasmid transfection and recombinant adeno-associated virus 2 (AAV) infection: human megakaryocytic leukaemia cells are non-permissive for AAV infection. Journal of General Virology 77:1111–1122
    [Google Scholar]
  23. Qing K., Mah C., Hansen J., Zhou S., Dwarki V., Srivastava A. 1999; Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nature Medicine 5:71–77
    [Google Scholar]
  24. Rutledge E. A., Halbert C. L., Russell D. W. 1998; Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. Journal of Virology 72:309–319
    [Google Scholar]
  25. Samulski R. J., Chang L. S., Shenk T. 1989; Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. Journal of Virology 63:3822–3828
    [Google Scholar]
  26. Shimomura S., Wong S., Brown K. E., Komatsu N., Kajigaya S., Young N. S. 1993; Early and late gene expression in UT-7 cells infected with B19 parvovirus. Virology 194:149–156
    [Google Scholar]
  27. Summerford C., Bartlett J. S., Samulski R. J. 1999; αVβ5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nature Medicine 5:78–82
    [Google Scholar]
  28. Tisdale J. F., Dunbar C. E., Goodman S. A. 1998; Gene therapy for hematological disorders, HIV infection, and cancer. In Wintrobe’s Clinical Hematology pp 2178–2208 Edited by Lee G. R., Foerster J., Greer R., Lukens J., Rodgers G., Paraskevas F. Baltimore: Williams & Wilkins;
    [Google Scholar]
  29. Veomett G., Kuszynski C., Kazakoff P., Rizzino A. 1989; Cell density regulates the number of cell surface receptors for fibroblast growth factor. Biochemical and Biophysical Research Communications 159:694–700
    [Google Scholar]
  30. Xiao W., Chirmule N., Berta S. C., McCullough B., Gao G., Wilson J. M. 1999; Gene therapy vectors based on adeno-associated virus type 1. Journal of Virology 73:3994–4003
    [Google Scholar]
  31. Zhou S. Z., Cooper S., Kang L. Y., Ruggieri L., Heimfeld S., Srivastava A., Broxmeyer H. E. 1994; Adeno-associated virus 2-mediated high efficiency gene transfer into immature and mature subsets of hematopoietic progenitor cells in human umbilical cord blood. Journal of Experimental Medicine 179:1867–1875
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-8-2077
Loading
/content/journal/jgv/10.1099/0022-1317-81-8-2077
Loading

Data & Media loading...

Most cited Most Cited RSS feed