1887

Abstract

The E1 protein of bovine papillomavirus type 1 (BPV-1) is the origin recognition protein and is essential for the initiation of viral DNA replication. We reported previously that there is a conserved motif between residues 25 and 60 of all papillomavirus E1 proteins that resembles a casein kinase II (CKII) phosphorylation site. The corresponding serine in BPV-1, serine-48, is an efficient substrate for CKII . To examine the functional role of this potential phosphorylation site, three amino acid substitutions were constructed at serine-48. Conversion of serine-48 to a glycine (S48G) resulted in a BPV-1 genome that was unable to replicate and had reduced transformation capacity. The S48G E1 protein also failed to support replication of a BPV-1 origin-containing plasmid when expressed from a heterologous vector rather than the viral genome, indicating a direct replication defect. In contrast, conversion of serine-48 to acidic residues (S48D or S48E), which mimic the charge and structure of phosphoserine, maintained the wild-type replication phenotype. These mutational results are consistent with a replication requirement for a negative charge at serine-48, presumably supplied by phosphorylation. The mechanistic basis for the negative charge requirement was examined by testing several activities of the S48G mutant E1 protein using yeast one- and two-hybrid systems. No gross defect was observed for stability, origin binding or interaction with E2 or for E1–E1 interaction, although subtle defects in these activities would not likely be detected. Overall, the results suggest that important phosphoregulatory control of E1 replication function is mediated through the N-terminal region of this protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-8-1995
2000-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/8/0811995a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-8-1995&mimeType=html&fmt=ahah

References

  1. Allende J. E., Allende C. C. 1995; Protein kinase. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB Journal 9:313–323
    [Google Scholar]
  2. Belyavskyi M., Westerman M., Dimichele L., Wilson V. G. 1996; Perturbation of the host cell cycle and DNA replication by the bovine papillomavirus replication protein E1. Virology 219:206–219
    [Google Scholar]
  3. Berg L. J., Singh K., Botchan M. 1986; Complementation of a bovine papilloma virus low-copy-number mutant: evidence for a temporal requirement of the complementing gene. Molecular and Cellular Biology 6:859–869
    [Google Scholar]
  4. Bergman P., Ustav M., Sedman J., Moreno-Lopez J., Vennstrom B., Pettersson U. 1988; The E5 gene of bovine papillomavirus type 1 is sufficient for complete oncogenic transformation of mouse fibroblasts. Oncogene 2:453–459
    [Google Scholar]
  5. Blitz I. L., Laimins L. A. 1991; The 68-kilodalton E1 protein of bovine papillomavirus is a DNA binding phosphoprotein which associates with the E2 transcriptional activator in vitro. Journal of Virology 65:649–656
    [Google Scholar]
  6. Bonne-Andrea C., Santucci S., Clertant P., Tillier F. 1995; Bovine papillomavirus E1 protein binds specifically DNA polymerase α but not replication protein A. Journal of Virology 69:2341–2350
    [Google Scholar]
  7. Chen G., Stenlund A. 1998; Characterization of the DNA-binding domain of the bovine papillomavirus replication initiator E1. Journal of Virology 72:2567–2576
    [Google Scholar]
  8. Chiang C. M., Broker T. R., Chow L. T. 1992a; Properties of bovine papillomavirus E1 mutants. Virology 191:964–967
    [Google Scholar]
  9. Chiang C. M., Ustav M., Stenlund A., Ho T. F., Broker T. R., Chow L. T. 1992b; Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proceedings of the National Academy of Sciences, USA 89:5799–5803
    [Google Scholar]
  10. Cueille N., Nougarede R., Mechali F., Philippe M., Bonne-Andrea C. 1998; Functional interaction between the bovine papillomavirus virus type 1 replicative helicase E1 and cyclin E–CDK2. Journal of Virology 72:7255–7262
    [Google Scholar]
  11. Ferran M. C., McBride A. A. 1998; Transient viral DNA replication and repression of viral transcription are supported by the C-terminal domain of the bovine papillomavirus type 1 E1 protein. Journal of Virology 72:796–801
    [Google Scholar]
  12. Fouts E. T., Yu X., Egelman E. H., Botchan M. R. 1999; Biochemical and electron microscopic image analysis of the hexameric E1 helicase. Journal of Biological Chemistry 274:4447–4458
    [Google Scholar]
  13. Gonzalez A., Bazaldua-Hernandez C., West M., Woytek K., Wilson V. G. 2000; Identification of a short, hydrophilic amino acid sequence critical for origin recognition by the bovine papillomavirus E1 protein. Journal of Virology 74:245–253
    [Google Scholar]
  14. Han Y., Loo Y.-M., Militello K. T., Melendy T. 1999; Interactions of the papovavirus DNA replication initiator proteins, bovine papillomavirus type 1 E1 and simian virus 40 large T antigen, with human replication factor A. Journal of Virology 73:4899–4907
    [Google Scholar]
  15. Holt S. E., Wilson V. G. 1995; Mutational analysis of the 18-base-pair inverted repeat element at the bovine papillomavirus origin of replication: identification of critical sequences for E1 binding and in vivo replication. Journal of Virology 69:6525–6532
    [Google Scholar]
  16. Holt S. E., Schuller G., Wilson V. G. 1994; DNA binding specificity of the bovine papillomavirus E1 protein is determined by sequences contained within an 18-base-pair inverted repeat element at the origin of replication. Journal of Virology 68:1094–1102
    [Google Scholar]
  17. Issinger O. G. 1993; Casein kinases: pleiotropic mediators of cellular regulation. Pharmacology & Therapeutics 59:1–30
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685
    [Google Scholar]
  19. Lambert P. F., Monk B. C., Howley P. M. 1990; Phenotypic analysis of bovine papillomavirus type 1 E2 repressor mutants. Journal of Virology 64:950–956
    [Google Scholar]
  20. Law M. F., Lowy D. R., Dvoretzky I., Howley P. M. 1981; Mouse cells transformed by bovine papillomavirus contain only extrachromosomal viral DNA sequences. Proceedings of the National Academy of Sciences, USA 78:2727–2731
    [Google Scholar]
  21. Le Moal M. A., Yaniv M., Thierry F. 1994; The bovine papillomavirus type 1 (BPV1) replication protein E1 modulates transcription activation by interacting with BPV1 E2. Journal of Virology 68:1085–1093
    [Google Scholar]
  22. Leng X., Wilson V. G. 1994; Genetically defined nuclear localization signal sequence of bovine papillomavirus E1 protein is necessary and sufficient for the nuclear localization of E1–β-galactosidase fusion proteins. Journal of General Virology 75:2463–2467
    [Google Scholar]
  23. Leng X., Ludesmeyers J. H., Wilson V. G. 1997; Isolation of an amino-terminal region of bovine papillomavirus type 1 E1 protein that retains origin binding and E2 interaction capacity. Journal of Virology 71:848–852
    [Google Scholar]
  24. Lentz M. R., Pak D., Mohr I., Botchan M. R. 1993; The E1 replication protein of bovine papillomavirus type 1 contains an extended nuclear localization signal that includes a p34cdc2 phosphorylation site. Journal of Virology 67:1414–1423
    [Google Scholar]
  25. Litchfield D. W., Dobrowolska G., Krebs E. G. 1994; Regulation of casein kinase II by growth factors: a re-evaluation. Cellular & Molecular Biology Research 40:373–381
    [Google Scholar]
  26. Liu J. S., Kuo S. R., Makhov A. M., Cyr D. M., Griffith J. D., Broker T. R., Chow L. T. 1998; Human HSP70 and HSP40 chaperone proteins facilitate human papillomavirus-11 E1 protein binding to the origin and stimulate cell-free DNA replication. Journal of Biological Chemistry 273:30704–30712
    [Google Scholar]
  27. Lusky M., Fontane E. 1991; Formation of the complex of bovine papillomavirus E1 and E2 proteins is modulated by E2 phosphorylation and depends upon sequences within the carboxyl terminus of E1. Proceedings of the National Academy of Sciences, USA 88:6363–6367
    [Google Scholar]
  28. Ma T. L., Zou N. X., Lin B. Y., Chow L. T., Harper J. W. 1999; Interaction between cyclin-dependent kinases and human papillomavirus replication-initiation protein E1 is required for efficient viral replication. Proceedings of the National Academy of Sciences, USA 96:382–387
    [Google Scholar]
  29. MacPherson P., Thorner L., Parker L. M., Botchan M. 1994; The bovine papilloma virus E1 protein has ATPase activity essential to viral DNA replication and efficient transformation in cells. Virology 204:403–408
    [Google Scholar]
  30. McShan G. D., Wilson V. G. 1997a; Casein kinase II phosphorylates bovine papillomavirus type 1 E1 in vitro at a conserved motif. Journal of General Virology 78:171–177
    [Google Scholar]
  31. McShan G. D., Wilson V. G. 1997b; Reconstitution of a functional bovine papillomavirus type 1 origin of replication reveals a modular tripartite replicon with an essential AT-rich element. Virology 237:198–208
    [Google Scholar]
  32. Mansky K. C., Batiza A., Lambert P. F. 1997; Bovine papillomavirus type 1 E1 and simian virus 40 large T antigen share regions of sequence similarity required for multiple functions. Journal of Virology 71:7600–7608
    [Google Scholar]
  33. Mohr I. J., Clark R., Sun S., Androphy E. J., MacPherson P., Botchan M. R. 1990; Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science 250:1694–1699
    [Google Scholar]
  34. Moscufo N., Sverdrup F., Breiding D. E., Androphy E. J. 1999; Two distinct regions of the BPV1 E1 replication protein interact with the activation domain of E2. Virus Research 65:141–154
    [Google Scholar]
  35. Park P., Copeland W., Yang L., Wang T., Botchan M. R., Mohr I. J. 1994; The cellular DNA polymerase alpha-primase is required for papillomavirus DNA replication and associates with the viral E1 helicase. Proceedings of the National Academy of Sciences, USA 91:8700–8704
    [Google Scholar]
  36. Ravnan J. B., Gilbert D. M., Ten-Hagen K. G., Cohen S. N. 1992; Random-choice replication of extrachromosomal bovine papillomavirus (BPV) molecules in heterogeneous, clonally derived BPV-infected cell lines. Journal of Virology 66:6946–6952
    [Google Scholar]
  37. Rihs H.-P., Peters R. 1989; Nuclear transport kinetics depend on phosphorylation-site-containing sequences flanking the karyophilic signal of the simian virus 40 T-antigen. EMBO Journal 8:1479–1484
    [Google Scholar]
  38. Rihs H. P., Jans D. A., Fan H., Peters R. 1991; The rate of nuclear cytoplasmic protein transport is determined by the casein kinase II site flanking the nuclear localization sequence of the SV40 T-antigen. EMBO Journal 10:633–639
    [Google Scholar]
  39. Sandler A. B., Vande-Pol S. B., Spalholz B. A. 1993; Repression of bovine papillomavirus type 1 transcription by the E1 replication protein. Journal of Virology 67:5079–5087
    [Google Scholar]
  40. Santucci S., Androphy E. J., Bonne-Andrea C., Clertant P. 1990; Proteins encoded by the bovine papillomavirus E1 open reading frame: expression in heterologous systems and in virally transformed cells. Journal of Virology 64:6027–6039
    [Google Scholar]
  41. Sarafi T. R., McBride A. A. 1995; Domains of the BPV-1 E1 replication protein required for origin-specific DNA binding and interaction with the E2 transactivator. Virology 211:385–396
    [Google Scholar]
  42. Sedman J., Stenlund A. 1995; Co-operative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro. EMBO Journal 14:6218–6228
    [Google Scholar]
  43. Sedman J., Stenlund A. 1996; The initiator protein E1 binds to the bovine papillomavirus origin of replication as a trimeric ring-like structure. EMBO Journal 15:5085–5092
    [Google Scholar]
  44. Sedman J., Stenlund A. 1998; The papillomavirus E1 protein forms a DNA-dependent hexameric complex with ATPase and DNA helicase activities. Journal of Virology 72:6893–6897
    [Google Scholar]
  45. Sedman T., Sedman J., Stenlund A. 1997; Binding of the E1 and E2 proteins to the origin of replication of bovine papillomavirus. Journal of Virology 71:2887–2896
    [Google Scholar]
  46. Seo Y. S., Müller F., Lusky M., Hurwitz J. 1993a; Bovine papilloma virus (BPV)-encoded E1 protein contains multiple activities required for BPV DNA replication. Proceedings of the National Academy of Sciences, USA 90:702–706
    [Google Scholar]
  47. Seo Y.-S., Müller F., Lusky M., Gibbs E., Kim H.-Y., Phillips B., Hurwitz J. 1993b; Bovine papilloma virus (BPV)-encoded E2 protein enhances binding of E1 protein to the BPV replication origin. Proceedings of the National Academy of Sciences, USA 90:2865–2869
    [Google Scholar]
  48. Spalholz B. A., McBride A. A., Sarafi T., Quintero J. 1993; Binding of bovine papillomavirus E1 to the origin is not sufficient for DNA replication. Virology 193:201–212
    [Google Scholar]
  49. Sun S., Thorner L., Lentz M., MacPherson P., Botchan M. 1990; Identification of a 68-kilodalton nuclear ATP-binding phosphoprotein encoded by bovine papillomavirus type 1. Journal of Virology 64:5093–5105
    [Google Scholar]
  50. Swindle C. S., Engler J. A. 1998; Association of the human papillomavirus type 11 E1 protein with histone H1. Journal of Virology 72:1994–2001
    [Google Scholar]
  51. Syrjanen K. J. 1989; Epidemiology of human papillomavirus (HPV) infections and their associations with genital squamous cell cancer. APMIS 97:957–970
    [Google Scholar]
  52. Thorner L. K., Lim D. A., Botchan M. R. 1993; DNA-binding domain of bovine papillomavirus type 1 E1 helicase: structural and functional aspects. Journal of Virology 67:6000–6014
    [Google Scholar]
  53. Ustav M., Stenlund A. 1991; Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames. EMBO Journal 10:449–457
    [Google Scholar]
  54. Ustav M., Ustav E., Szymanski P., Stenlund A. 1991; Identification of the origin of replication of bovine papillomavirus and characterization of the viral origin recognition factor E1. EMBO Journal 10:4321–4329
    [Google Scholar]
  55. Wilson V. G., Ludes-Meyers J. 1991; A bovine papillomavirus E1-related protein binds specifically to bovine papillomavirus DNA. Journal of Virology 65:5314–5322
    [Google Scholar]
  56. Yang L., Mohr I., Fouts E., Lim D. A., Nohaile M., Botchan M. 1993; The E1 protein of bovine papilloma virus 1 is an ATP-dependent DNA helicase. Proceedings of the National Academy of Sciences, USA 90:5086–5090
    [Google Scholar]
  57. Yasugi T., Vidal M., Sakai H., Howley P. M., Benson J. D. 1997; Two classes of human papillomavirus type 16 E1 mutants suggest pleiotropic conformational constraints affecting E1 multimerization, E2 interaction, and interaction with cellular proteins. Journal of Virology 71:5942–5951
    [Google Scholar]
  58. Zanardi T. 1997 Regulation of bovine papillomavirus DNA replication by phosphorylation of the viral E1 protein PhD dissertation Texas A&M University; College Station, TX, USA:
  59. Zanardi T. A., Stanley C. M., Saville B. M., Spacek S. M., Lentz M. R. 1997; Modulation of bovine papillomavirus DNA replication by phosphorylation of the viral E1 protein. Virology 228:1–10
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-8-1995
Loading
/content/journal/jgv/10.1099/0022-1317-81-8-1995
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error