Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein Free

Abstract

From analysis of the primary sequence of the hepatitis C virus (HCV) core protein, we have identified three separable regions based on hydrophobicity and clustering of basic amino acids within the protein. Comparison with capsid proteins of related pesti- and flaviviruses suggested that HCV core has a unique central domain (domain 2). Previous findings have revealed that core protein can associate with lipid droplets which are intracellular storage sites for triacylglycerols and cholesterol esters. Confocal analysis of variant forms lacking regions of core indicated that most residues within the unique region are necessary for association of the protein with lipid droplets. A segment within domain 2 (from residues 125 to 144) also was required for stability of the protein and a polypeptide lacking these sequences was degraded apparently by the proteasome. In cells depleted of lipid droplets, core protein remained located in the cytoplasm. Moreover, cleavage of the protein at the maturation site and stability were not affected by inability to bind to lipid droplets.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-8-1913
2000-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/8/0811913a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-8-1913&mimeType=html&fmt=ahah

References

  1. Barba G., Harper F., Harada T., Kohara M., Goulinet S., Matsuura Y., Eder G., Schaff Zs., Chapman M. J., Miyamura T., Brechot C. 1997; Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proceedings of the National Academy of Sciences, USA 94:1200–1205
    [Google Scholar]
  2. Brasaemle D. L., Barber T., Wolins N. E., Serrero G., Blanchette-Mackie E. J., Londos C. 1997; Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. Journal of Lipid Research 38:2249–2263
    [Google Scholar]
  3. Bukh J., Purcell R. H., Miller R. H. 1994; Sequence analysis of the core gene of 14 hepatitis C virus genotypes. Proceedings of the National Academy of Sciences, USA 91:8239–8243
    [Google Scholar]
  4. Chang J., Yang S.-H., Cho Y.-G., Hwang S. B., Hahn Y. S., Sung Y. C. 1998; Hepatitis C virus core protein from two different genotypes has an oncogenic potential but is not sufficient for transforming primary rat embryo fibroblasts in cooperation with the H- ras oncogene. Journal of Virology 72:3060–3065
    [Google Scholar]
  5. Chen C.-M., You L.-R., Hwang L.-H., Lee Y.-H. W. 1997; Direct interaction of hepatitis C virus core protein with the cellular lymphotoxin-β receptor modulates the signal pathway of the lymphotoxin-β receptor. Journal of Virology 71:9417–9426
    [Google Scholar]
  6. Chen Y., Le Cahérec F., Chuck S. L. 1998; Calnexin and other factors that alter translocation affect the rapid binding of ubiquitin to apoB in the sec61 complex. Journal of Biological Chemistry 273:11887–11894
    [Google Scholar]
  7. Choo Q.-L., Richman K. H., Han J. H., Berger K., Lee C., Dong C., Gallegos C., Coit D., Medina-Selby A., Barr P. J., Weiner A. J., Bradley D. W., Kuo G., Houghton M. 1991; Genetic organization and diversity of the hepatitis C virus. Proceedings of the National Academy of Sciences, USA 88:2451–2455
    [Google Scholar]
  8. Di Bisceglie A. M. 1998; Hepatitis C. Lancet 351:351–355
    [Google Scholar]
  9. Grakoui A., Wychowski C., Lin C., Feinstone S. M., Rice C. M. 1993; Expression and identification of hepatitis C virus polyprotein cleavage products. Journal of Virology 67:1385–1395
    [Google Scholar]
  10. Hijikita M., Kato N., Ootsuyuma Y., Nakagawa M., Shimotohno K. 1991; Gene mapping of the putative structural region of the hepatitis C virus genome by in vitro processing analysis. Proceedings of the National Academy of Sciences, USA 88:5547–5551
    [Google Scholar]
  11. Huang A. H. C. 1992; Oil bodies and oleosins in seeds. Annual Review of Plant Physiology and Plant Molecular Biology 43:177–200
    [Google Scholar]
  12. Hussy P., Langen H., Mous J., Jacobsen H. 1996; Hepatitis C virus core protein: carboxy-terminal boundaries of two processed species suggest cleavage by a signal peptide peptidase. Virology 224:93–104
    [Google Scholar]
  13. Kuo G., Choo Q.-L., Alter H. J., Gitnick G. L., Redeker A. G., Purcell R. H., Miyamura T., Dienstag J. L., Alter M. J., Stevens C. E., Tegtmeier G. E., Bonino F., Colombo M., Lee W.-S., Kuo C., Berger K., Shuster J. R., Overby L. R., Bradley D. W., Houghton M. 1989; An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244:362–364
    [Google Scholar]
  14. Lee D. H., Goldberg A. L. 1996; Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae . Journal of Biological Chemistry 271:27280–27284
    [Google Scholar]
  15. Lefkowitch J. H., Schiff E. R., Davis G. L., Perrillo R. P., Lindsay K., Bodenheimer H. C. Jr, Balart L. A., Ortego T. J., Payne J., Dienstag J. L., Gibas A., Jacobson I. M., Tamburro C. H., Carey W., O’Brien C., Sampliner R., Van Thiel D. H., Feit D., Albrecht J. the Hepatitis Interventional Therapy Group 1993; Pathological diagnosis of chronic hepatitis C: a multicenter comparative study with chronic hepatitis B. Gastroenterology 104:595–603
    [Google Scholar]
  16. LePrince O., van Aelst A. C., Pritchard H. W., Murphy D. J. 1997; Oleosins prevent oil-body coalescence during seed imbibition as suggested by a low-temperature scanning electron microscope study of desiccation-tolerant and -sensitive oilseeds. Planta 204:109–119
    [Google Scholar]
  17. Liljestrom P., Garoff H. 1991; A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology 9:1356–1361
    [Google Scholar]
  18. Liu Q., Tackney C., Bhat R. A., Prince A. M., Zhang P. 1997; Regulated processing of hepatitis C virus core protein is linked to subcellular localization. Journal of Virology 71:657–662
    [Google Scholar]
  19. Lo S.-Y., Selby M., Tong M., Ou J.-H. 1994; Comparative studies of the core gene products of two different hepatitis C virus isolates: two alternative forms determined by a single amino acid substitution. Virology 199:124–131
    [Google Scholar]
  20. Lo S.-Y., Masiarz F., Hwang S. B., Lai M. M. C., Ou J.-H. 1995; Differential subcellular localization of hepatitis C virus core gene products. Virology 213:455–461
    [Google Scholar]
  21. Londos C., Brasaemle D. L., Schultz C. J., Segrest J. P., Kimmel A. R. 1999; Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Cellular and Developmental Biology 10:51–58
    [Google Scholar]
  22. Marusawa H., Hijikita M., Chiba T., Shimotohno K. 1999; Hepatitis C virus core protein inhibits Fas - and tumor necrosis factor alpha-mediated apoptosis via NF-κB activation. Journal of Virology 73:4713–4720
    [Google Scholar]
  23. Moradpour D., Englert C., Wakita T., Wands J. R. 1996; Characterization of cell lines allowing tightly regulated expression of hepatitis C virus core protein. Virology 222:51–63
    [Google Scholar]
  24. Moriya K., Yotsuyanagi H., Shintani Y., Fujie H., Ishibashi K., Matsuura Y., Miyamura T., Koike K. 1997; Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. Journal of General Virology 78:1527–1531
    [Google Scholar]
  25. Moriya K., Fujie H., Shintani Y., Yotsuyanagi H., Tsutsumi T., Ishibashi K., Matsuura Y., Kimura S., Miyamura T., Koike K. 1998; The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nature Medicine 4:1065–1067
    [Google Scholar]
  26. Murphy D. J., Vance J. 1999; Mechanisms of lipid-body formation. Trends in Biological Sciences 24:109–115
    [Google Scholar]
  27. Patel J., Patel A. H., McLauchlan J. 1999; Covalent interactions are not required to permit or stabilize the non-covalent association of hepatitis C virus glycoproteins E1 and E2. Journal of General Virology 80:1681–1690
    [Google Scholar]
  28. Ray R. B., Lagging L. M., Meyer K., Steele R., Ray R. 1995; Transcriptional regulation of cellular and viral promoters by the hepatitis C virus core protein. Virus Research 37:209–220
    [Google Scholar]
  29. Ray R. B., Steele R., Meyer K., Ray R. 1997; Transcriptional repression of p53 promoter by hepatitis C virus core protein. Journal of Biological Chemistry 272:10983–10986
    [Google Scholar]
  30. Ray R. B., Meyer K., Steele R., Shrivastava A., Aggarwal B. B., Ray R. 1998a; Inhibition of tumor necrosis factor (TNF-α)-mediated apoptosis by hepatitis C virus core protein. Journal of Biological Chemistry 273:2256–2259
    [Google Scholar]
  31. Ray R. B., Steele R., Meyer K., Ray R. 1998b; Hepatitis C virus core protein represses p21WAF1/Cip1/Sid1 promoter activity. Gene 208:331–336
    [Google Scholar]
  32. Robertson B., Myers G., Howard C., Brettin T., Bukh J., Gaschen B., Gojobori T., Maertens G., Mizokami M., Nainan O., Netesov S., Nishioka K., Shin-I T., Simmonds P., Smith D., Stuyver L., Weiner A. 1998; Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: proposals for standardization. Archives of Virology 143:2493–2503
    [Google Scholar]
  33. Ruggieri A., Harada T., Matsuura Y., Miyamura T. 1997; Sensitization to Fas -mediated apoptosis by hepatitis C virus core protein. Virology 229:68–76
    [Google Scholar]
  34. Rümenapf T., Unger G., Strauss J. H., Thiel H.-J. 1993; Processing of the envelope glycoproteins of pestiviruses. Journal of Virology 67:3288–3295
    [Google Scholar]
  35. Sabile A., Perlemuter G., Bono F., Kohara K., Demaugre F., Kohara M., Matsuura Y., Miyamura T., Bréchot C., Barba G. 1999; Hepatitis C virus core protein binds to apolipoprotein AII and its secretion is modulated by fibrates. Hepatology 30:1064–1076
    [Google Scholar]
  36. Santolini E., Migliaccio G., La Monica N. 1994; Biosynthesis and biochemical properties of the hepatitis C virus core protein. Journal of Virology 68:3631–3641
    [Google Scholar]
  37. Scheuer P. J., Ashrafzadeh P., Sherlock S., Brown D., Dusheiko G. M. 1992 The pathology of hepatitis C /title>Hepatology 15:567–571
    [Google Scholar]
  38. Selby M. J., Choo Q.-L., Berger K., Kuo G., Glazer E., Eckart M., Lee C., Chien D., Kuo C., Houghton M. 1993; Expression, identification and subcellular localization of the proteins encoded by the hepatitis C viral genome. Journal of General Virology 74:1103–1113
    [Google Scholar]
  39. Shrivastava A., Manna S. K., Ray R., Aggarwal B. B. 1998; Ectopic expression of hepatitis C virus core protein differentially regulates nuclear transcription factors. Journal of Virology 72:9722–9728
    [Google Scholar]
  40. Speight G., Westaway E. G. 1989; Carboxy-terminal analysis of nine proteins specified by the flavivirus Kunjin: evidence that only the intracellular core protein is truncated. Journal of General Virology 70:2209–2214
    [Google Scholar]
  41. Stark R., Meyers G., Rümenapf T., Thiel H.-J. 1993; Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus. Journal of Virology 67:7088–7095
    [Google Scholar]
  42. Suzuki R., Matsuura Y., Suzuki T., Ando A., Chiba J., Harada S., Saito I., Miyamura T. 1995; Nuclear localization of the truncated hepatitis C virus core protein with its hydrophobic C terminus deleted. Journal of General Virology 76:53–61
    [Google Scholar]
  43. Takamizawa A., Mori C., Fuke I., Manabe S., Murakami S., Fujita J., Onishi E., Andoh T., Yoshida I., Okayama H. 1991; Structure and organization of the hepatitis C virus genome isolated from human carriers. Journal of Virology 65:1105–1113
    [Google Scholar]
  44. van Rooijen G. J. H., Moloney M. M. 1995; Structural requirements of oleosin domains for subcellular targeting to the oil body. Plant Physiology 109:1353–1361
    [Google Scholar]
  45. Yasui K., Wakita T., Tsukiyama-Kohara K., Funahashi S.-I., Ichikawa M., Kajita T., Moradpour D., Wands J. R., Kohara M. 1998; The native form and maturation process of hepatitis C virus core protein. Journal of Virology 72:6048–6055
    [Google Scholar]
  46. You L.-R., Chen C.-M., Lee Y.-H. W. 1999; Hepatitis C virus core protein enhances NF-κB signal pathway triggering by lymphotoxin-β receptor ligand and tumor necrosis factor alpha. Journal of Virology 73:1672–1681
    [Google Scholar]
  47. Zhu N., Khoshnan A., Schneider R., Matsumoto M., Dennert G., Ware C., Lai M. M. C. 1998; Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF) receptor 1 and enhances TNF-induced apoptosis. Journal of Virology 72:3691–3697
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-8-1913
Loading
/content/journal/jgv/10.1099/0022-1317-81-8-1913
Loading

Data & Media loading...

Most cited Most Cited RSS feed