1887
Preview this article:
Zoom in
Zoomout

In the beginning: genome recognition, RNA encapsidation and the initiation of complex retrovirus assembly, Page 1 of 1

| /docserver/preview/fulltext/jgv/81/8/0811889a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-8-1889
2000-08-01
2020-08-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/8/0811889a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-8-1889&mimeType=html&fmt=ahah

References

  1. Arthur L. O., Bess J. W., Chertova E. N., Rossio J. L., Esser M. T., Benveniste R. E., Henderson L. E., Lifson J. D.. 1998; Chemical inactivation of retroviral infectivity by targeting nucleocapsid protein zinc fingers: a candidate SIV vaccine. AIDS Research and Human Retroviruses14:311–319
    [Google Scholar]
  2. Berg J. M., Shi Y.. 1996; The galvanization of biology: a growing appreciation for the roles of zinc. Science271:1081–1085
    [Google Scholar]
  3. Berkowitz R. D., Ohagen A., Hoglund S., Goff S. P.. 1995; Retroviral nucleocapsid domains mediate the specific recognition of genomic viral RNAs by chimeric gag polyproteins during RNA packaging in vivo . Journal of Virology69:6445–6456
    [Google Scholar]
  4. Berkowitz R., Fisher J., Goff S. P.. 1996; RNA packaging. Current Topics in Microbiology and Immunology214:177–218
    [Google Scholar]
  5. Burniston M. T., Cimarelli A., Colgan J., Curtis S. P., Luban J.. 1999; Human immunodeficiency virus type 1 gag polyprotein multimerization requires the nucleocapsid domain and RNA and is promoted by the capsid–dimer interface and the basic region of matrix protein. Journal of Virology73:8527–8540
    [Google Scholar]
  6. Cimarelli A., Sandin S., Hoglund S., Luban J.. 2000; Basic residues in human immunodeficiency virus type 1 nucleocapsid promote virion assembly via interaction with RNA. Journal of Virology74:3046–3057
    [Google Scholar]
  7. De Guzman R. N., Wu Z. R., Stalling C. C., Pappalardo L., Borer P. N., Summers M. F.. 1998; Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi–RNA recognition element. Science279:384–388
    [Google Scholar]
  8. Dupont S., Sharova N., DeHoratius C., Virbasius C. M., Zhu X., Bukrinskaya A. G., Stevenson M., Green M. R.. (1999; A novel nuclear export activity in HIV-1 matrix protein required for viral replication. Nature402:681–685
    [Google Scholar]
  9. Enssle J., Fischer N., Moebes A., Mauer B., Smola U., Rethwilm A.. 1997; Carboxy-terminal cleavage of the human foamy virus Gag precursor molecule is an essential step in the viral life cycle. Journal of Virology71:7312–7317
    [Google Scholar]
  10. Erlwein O., Cain D., Fischer N., Rethwilm A., McClure M. O.. 1997; Identification of sites that act together to direct dimerization of human foamy virus RNA in vitro. Virology229:251–258
    [Google Scholar]
  11. Erlwein O., Bieniasz P. D., McClure M. O.. 1998; Sequences in pol are required for transfer of human foamy virus-based vectors. Journal of Virology72:5510–5516
    [Google Scholar]
  12. Freed E. O.. 1998; HIV-1 Gag proteins: diverse functions in the virus life cycle. Virology251:1–15
    [Google Scholar]
  13. Gorelick R. J., Chabot D. J., Rein A., Henderson L. E., Arthur L. O.. 1993; The two zinc fingers in the human immunodeficiency virus type 1 nucleocapsid protein are not functionally equivalent. Journal of Virology67:4027–4036
    [Google Scholar]
  14. Harrison G. P., Miele G., Hunter E., Lever A. M. L.. 1998; Functional analysis of the core human immunodeficiency virus type 1 packaging signal in a permissive cell line. Journal of Virology72:5886–5896
    [Google Scholar]
  15. Heinkelein M., Schmidt M., Fischer N., Moebes A., Lindemann D., Enssle J., Rethwilm A.. 1998; Characterization of a cis-acting sequence in the Pol region required to transfer human foamy virus vectors. Journal of Virology72:6307–6314
    [Google Scholar]
  16. Helga-Maria C., Hammarskjold M.-L., Rekosh D.. 1999; An intact TAR element and cytoplasmic localization are necessary for efficient packaging of human immunodeficiency virus type 1 genomic RNA. Journal of Virology73:4127–4135
    [Google Scholar]
  17. Katoh I., Kyushiki H., Sakamoto Y., Ikawa Y., Yoshinaka Y.. 1991; Bovine leukemia virus matrix-associated protein MA(p15): further processing and formation of a specific complex with the dimer of the 5’ terminal genomic RNA fragment. Journal of Virology65:6845–6855
    [Google Scholar]
  18. Katoh I., Yasunaga T., Yoshinaka Y.. 1993; Bovine leukemia virus RNA sequences involved in dimerization and specific gag protein binding: close relation to the packaging sites of avian, murine, and human retroviruses. Journal of Virology67:1830–1839
    [Google Scholar]
  19. Katz R. A., Terry R. W., Skalka A. M.. 1986; A conserved cis-acting sequence in the 5’ leader of avian sarcoma virus RNA is required for packaging. Journal of Virology59:163–167
    [Google Scholar]
  20. Kaye J. F., Lever A. M. L.. 1998; Nonreciprocal packaging of human immunodeficiency virus type 1 and type 2 RNA: a possible role for the p2 domain of Gag in RNA encapsidation. Journal of Virology72:5877–5885
    [Google Scholar]
  21. Kaye J. F., Lever A. M. L.. 1999; Human immunodeficiency virus types 1 and 2 differ in the predominant mechanism used for selection of genomic RNA for encapsidation. Journal of Virology73:3023–3031
    [Google Scholar]
  22. Kaye J. F., Richardson J. H., Lever A. M. L.. 1995; cis-Acting sequences involved in human immunodeficiency virus type 1 RNA packaging. Journal of Virology69:6588–6592
    [Google Scholar]
  23. Klug A.. 1999; Zinc finger peptides for the regulation of gene expression. Journal of Molecular Biology293:215–218
    [Google Scholar]
  24. Linial M. L.. 1999; Foamy viruses are unconventional retroviruses. Journal of Virology73:1747–1755
    [Google Scholar]
  25. Liu B., Dai R., Tian C. J., Dawson L., Gorelick R., Yu X. F.. 1999; Interaction of the human immunodeficiency virus type 1 nucleocapsid with actin. Journal of Virology73:2901–2908
    [Google Scholar]
  26. Lochrie M. A., Waugh S., Pratt D. G., Clever J., Parslow T. G., Polisky B.. 1997; In vitro selection of RNAs that bind to the human immunodeficiency virus type 1 gag polyprotein. Nucleic Acids Research25:2902–2910
    [Google Scholar]
  27. Luban J., Goff S. P.. 1994; Mutational analysis of cis-acting packaging signals in human immunodeficiency virus type 1 RNA. Journal of Virology68:3784–3793
    [Google Scholar]
  28. McBride M. S., Panganiban A. T.. 1996; The human immunodeficiency virus type 1 encapsidation site is a multipartite RNA element composed of functional hairpin structures. Journal of Virology70:2963–2973
    [Google Scholar]
  29. McBride M. S., Panganiban A. T.. 1997; Position dependence of functional hairpins important for human immunodeficiency virus type 1 RNA encapsidation in vivo . Journal of Virology71:2050–2058
    [Google Scholar]
  30. McBride M. S., Schwartz M. D., Panganiban A. T.. 1997; Efficient encapsidation of human immunodeficiency virus type 1 vectors and further characterization of cis -elements required for encapsidation. Journal of Virology71:4544–4554
    [Google Scholar]
  31. McCann E. M., Lever A. M. L.. 1997; Location of cis -acting signals important for RNA encapsidation in the leader sequence of human immunodeficiency virus type 2. Journal of Virology71:4133–4137
    [Google Scholar]
  32. McDonnell N. B., De Guzman R. N., Rice W. G., Turpin J. A., Summers M. F.. 1997; Zinc ejection as a new rationale for the use of cystamine and related disulfide-containing antiviral agents in the treatment of AIDS. Journal of Medicinal Chemistry49:1969–1976
    [Google Scholar]
  33. Mansky L. M., Krueger A. E., Temin H. M.. 1995; The bovine leukemia virus encapsidation signal is discontinuous and extends into the 5’ end of the gag gene. Journal of Virology69:3282–3289
    [Google Scholar]
  34. Mansky L. M., Wisniewski R. M.. 1998; The bovine leukemia virus encapsidation signal is composed of RNA secondary structures. Journal of Virology72:3196–3204
    [Google Scholar]
  35. Morikawa Y., Goto T., Sano K.. 1999; In vitro assembly of human immunodeficiency virus type 1 Gag protein. Journal of Biological Chemistry274:27997–28002
    [Google Scholar]
  36. Morikawa Y., Hockley D. J., Nermut M. V., Jones I. M.. 2000; Roles of matrix, p2, and N-terminal myristoylation in human immunodeficiency virus type 1 Gag assembly. Journal of Virology74:16–23
    [Google Scholar]
  37. Mougel M., Zhang Y., Barklis E.. 1996; cis -Active structural motifs involved in specific encapsidation of moloney murine leukemia virus RNA. Journal of Virology70:5043–5050
    [Google Scholar]
  38. Ott D. E., Hewes S. M., Alvord W. G., Henderson L. E., Arthur L. O.. 1998; Inhibition of Friend virus replication by a compound that reacts with the nucleocapsid zinc finger: anti-retroviral effect demonstrated in vivo. Virology243:283–292
    [Google Scholar]
  39. Parent L. J., Cairns T. M., Albert J. A., Wilson C. B., Wills J. W., Craven R. C.. (2000; RNA dimerization defect in a Rous sarcoma virus matrix mutant. Journal of Virology74:164–172
    [Google Scholar]
  40. Pfrepper K. I., Lochelt M., Rackwitz H. R., Schnolzer M., Heid H., Flugel R. M.. 1999; Molecular characterization of proteolytic processing of the Gag proteins of human spumavirus. Journal of Virology73:7907–7911
    [Google Scholar]
  41. Poon D. T. K., Wu J., Aldovini A.. 1996; Charged amino acid residues of human immunodeficiency virus type 1 nucleocapsid p7 protein involved in RNA packaging and infectivity. Journal of Virology70:6607–6616
    [Google Scholar]
  42. Poon D. T. K., Li G., Aldovini A.. 1998; Nucleocapsid and matrix protein contributions to selective human immunodeficiency virus type 1 genomic RNA packaging. Journal of Virology72:1983–1993
    [Google Scholar]
  43. Reil H., Bukovsky A. A., Gelderblom H. R., Gottlinger H. G.. 1998; Efficient HIV-1 replication can occur in the absence of the viral matrix protein. EMBO Journal17:2699–2708
    [Google Scholar]
  44. Rein A.. 1994; Retroviral RNA packaging: a review. Archives of Virology . Supplementum9:513–522
    [Google Scholar]
  45. Rein A., Henderson L. E., Levin J. G.. 1998; Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends in Biochemical Sciences23:297–301
    [Google Scholar]
  46. Rice W. G., Turpin J. A., Huang M., Clanton D., Buckheit R. W. J., Covell D. G., Wallqvist A., McDonnell N. B., DeGuzman R. N., Summers M. F., Zalkow L., Bader J. P., Haugwitz R. D., Sausville E. A.. 1997; Azodicarbonamide inhibits HIV-1 replication by targeting the nucleocapsid protein. Nature Medicine3:341–345
    [Google Scholar]
  47. Schmalzbauer E., Strack B., Dannull J., Guehmann S., Moelling K.. 1996; Mutations of basic amino acids of NCp7 of human immunodeficiency virus type 1 affect RNA binding in vitro. Journal of Virology70:771–777
    [Google Scholar]
  48. Schwartz M. D., Fiore D., Panganiban A. T.. 1997; Distinct functions and requirements for the cys-his boxes of the human immunodeficiency virus type 1 nucleocapsid protein during RNA encapsidation and replication. Journal of Virology71:9295–9305
    [Google Scholar]
  49. Swanstrom R., Wills J. W.. 1997; Synthesis, assembly, and processing of viral proteins. In Retroviruses pp263–334 Edited by Coffin J. M., Hughes S. H., Varmus H. E. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  50. Tassignon J., Ismaili J., Le Moine A., Van Laethem F., Leo O., Vandevelde M., Goldman M.. 1999; Azodicarbonamide inhibits T-cell responses in vitro and in vivo. Nature Medicine5:947–950
    [Google Scholar]
  51. Wilk T., Gowen B., Fuller S. D.. 1999; Actin associates with the nucleocapsid domain of the human immunodeficiency virus Gag polyprotein. Journal of Virology73:1931–1940
    [Google Scholar]
  52. Wu M., Chari S., Yanchis T., Mergia A.. 1998; cis-Acting sequences required for simian foamy virus type 1 vectors. Journal of Virology72:3451–3454
    [Google Scholar]
  53. Yu S. F., Edelmann K., Strong R. K., Moebes A., Rethwilm A., Linial M. L.. 1996; The carboxyl terminus of the human foamy virus Gag protein contains separable nucleic acid binding and nuclear transport domains. Journal of Virology70:8255–8262
    [Google Scholar]
  54. Yu S. F., Sullivan M. D., Linial M. L.. 1999; Evidence that the human foamy virus genome is DNA. Journal of Virology73:1565–1572
    [Google Scholar]
  55. Zeffman A., Hassard S., Varani G., Lever A.. 2000; The major HIV-1 packaging signal is an extended bulged stem loop whose structure is altered on interaction with the Gag polyprotein. Journal of Molecular Biology297:877–893
    [Google Scholar]
  56. Zhang Y., Qian H., Love Z., Barklis E.. 1998; Analysis of the assembly function of the human immunodeficiency virus type 1 Gag protein nucleocapsid domain. Journal of Virology72:1782–1789
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-8-1889
Loading
/content/journal/jgv/10.1099/0022-1317-81-8-1889
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error