1887

Abstract

Direct intramuscular injection of plasmid DNA can generate immune responses against encoded antigens. However, the relative ability of DNA vaccines to induce cellular and humoral immunity after a single or booster immunization and the persistence of this response have not been fully elucidated. In this study, induction and maintenance of antibody and T cell subtypes with different doses of naked DNA encoding the haemagglutinin (HA) gene of influenza virus were examined and compared to the immune responses and protection induced by respiratory tract infection and immunization with a killed virus vaccine. Like natural infection, immunization with HA DNA induced potent Th1 responses. Spleen cells from mice immunized once with HA DNA in the dose range 10 ng to 100 μg secreted significant levels of IFN-γ, but low or undetectable IL-5, in response to influenza virus . Furthermore, CD4 HA-specific Th1 clones were generated from spleens of immunized mice. Although T cell responses waned 12 weeks after a single immunization, antigen-specific Th1 cells persisted in the spleen for at least 6 months after two booster immunizations. In contrast, influenza virus-specific ELISA IgG titres were low after a single immunization and required two booster immunizations to reach significant levels. Furthermore, haemagglutination inhibition (HI) antibodies were weak or undetectable after two immunizations. Nevertheless, two doses of HA DNA conferred almost complete protection against respiratory challenge with live virus. Thus, despite the limited ability to induce antibodies, DNA vaccines confer protective immunity against influenza virus infection, which appears to be mediated by Th1 cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-7-1737
2000-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/7/0811737a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-7-1737&mimeType=html&fmt=ahah

References

  1. Bot, A., Antohi, S., Bot, S., Garcia-Sastre, A. & Bono, C. (1997). Induction of humoral and cellular immunity against influenza virus by immunization of newborn mice with a plasmid bearing a hemagglutinin gene. International Immunology 9, 1641-1650.[CrossRef] [Google Scholar]
  2. Brazolot Millan, C. L., Weeratna, R., Krieg, A. M., Siegrist, C. A. & Davis, H. L. (1998). CpG DNA can induce strong Th1 humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. Proceedings of the National Academy of Sciences, USA 95, 15553-15558.[CrossRef] [Google Scholar]
  3. Casares, S., Inaba, K., Brumeanu, T. D., Steinman, R. M. & Bona, C. A. (1997). Antigen presentation by dendritic cells after immunization with DNA encoding a major histocompatibility complex class II-restricted viral epitope. Journal of Experimental Medicine 186, 1481-1486.[CrossRef] [Google Scholar]
  4. Chu, R. S., Targoni, O. S., Krieg, A. M., Lehmann, P. V. & Harding, C. V. (1997). CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. Journal of Experimental Medicine 186, 1623-1631.[CrossRef] [Google Scholar]
  5. Davis, H. L. (1998). Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proceedings of the National Academy of Sciences, USA 95, 12631-12636.[CrossRef] [Google Scholar]
  6. Davis, H. L., Weeranta, R., Waldschmidt, T. J., Tygrett, L., Schorr, J. & Krieg, A. M. (1998). CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. Journal of Immunology 160, 870-876. [Google Scholar]
  7. Deck, R. R., Corrille, M., DeWitt, J. J., Liu, M. A. & Ulmer, J. B. (1997). Characterization of humoral immune responses induced by influenza hemagglutinin DNA vaccine. Vaccine 15, 71-78.[CrossRef] [Google Scholar]
  8. Donnelly, J. J. (1997). DNA vaccines.Annual Reviews in Immunology 15, 617-648.[CrossRef] [Google Scholar]
  9. Feltquate, D. M., Heaney, S., Webster, R. G. & Robinson, H. L. (1997). Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. Journal of Immunology 158, 2278-2284. [Google Scholar]
  10. Fynan, E. F., Webster, R. G., Fuller, D. H., Haynes, J. R., Santoro, J. C. & Robinson, H. L. (1993). DNA vaccines: protective immunizations by parenteral, mucosal and gene-gun inoculations. Proceedings of the National Academy of Sciences, USA 90, 11478-11482.[CrossRef] [Google Scholar]
  11. Graham, M. B. & Braciale, T. J. (1997). Resistance to recovery from lethal influenza virus infection in B lymphocyte-deficient mice. Journal of Experimental Medicine 186, 2063-2068.[CrossRef] [Google Scholar]
  12. Graham, C. M., Smith, C. A. & Thomas, D. B. (1998). Novel diversity in Th1, Th2 type differentiation of hemagglutinin-specific T cell clones elicited by natural influenza virus infection in three major haplotypes (H-2b, d, k). Journal of Immunology 161, 1094-1103. [Google Scholar]
  13. Hawkes, R. A. (1979). General principles underlying laboratory diagnosis of viral infections. In Diagnostic Procedures for Viral, Rickettsial and Chlamydial Infections, pp. 34-35. Edited by E. H. Lennette & N. J. Schmidt. Washington, DC: American Public Health Association.
  14. Klinman, D. M. (1998). Therapeutic applications of CpG-containing oligodeoxynucleotides. Antisense Nucleic Acid and Drug Development 8, 181-184.[CrossRef] [Google Scholar]
  15. Klinman, D. M., Yamshchikov, G. & Ishigatsubo, Y. (1997). Contribution of CpG motifs to the immunogenicity of DNA vaccines. Journal of Immunology 158, 3635-3639. [Google Scholar]
  16. Krieg, A. M., Yi, A. K., Schorr, J. & Davis, H. L. (1998). The role of CpG dinucleotides in DNA vaccines. Trends in Microbiology 6, 23-27.[CrossRef] [Google Scholar]
  17. Liu, M. A. (1995). Overview of DNA vaccines. Annals of the New York Academy of Science 772, 15-20.[CrossRef] [Google Scholar]
  18. Mills, K. H. G., Skehel, J. J., Graham, C. M. & Thomas, D. B. (1986). Extensive diversity in the recognition of influenza virus haemagglutinin by murine T cell clones. Journal of Experimental Medicine 163, 1477-1490.[CrossRef] [Google Scholar]
  19. Mills, K. H. G., Ryan, M., Ryan, E. & Mahon, B. P. (1998). A murine model in which protection correlates with pertussis vaccine efficacy in children reveals complementary roles for humoral and cell-mediated immunity in protection against Bordetella pertussis. Infection and Immunity 66, 594-602. [Google Scholar]
  20. Moore, A., McQuirk, P., Adams, S., Jones, W. C., McGee, J. P., O’Hagan, D. & Mills, K. H. G. (1995). Induction of HIV-specific CD8+ CTL and CD4+ Th1 cells by immunization with recombinant gp120 entrapped in biodegradable microparticles. Vaccine 13, 1741-1749.[CrossRef] [Google Scholar]
  21. Moore, A., McCarthy, L. & Mills, K. H. G. (1999). The adjuvant combination monophosphoryl lipid A and QS21 switches T cell responses induced with a recombinant HIV protein from Th2 to Th1.Vaccine 17, 2517-2527.[CrossRef] [Google Scholar]
  22. Robinson, H. L. & Torres, C. A. (1997). DNA vaccines. Seminars in Immunology 9, 271-283.[CrossRef] [Google Scholar]
  23. Topham, D. J., Tripp, R. A., Hamilton-Easton, A. M., Sara, S. R. & Doherty, P. C. (1996). Quantitative analysis of the influenza virus-specific CD4+ T cell memory in the absence of B cells and Ig. Journal of Immunology 157, 2947-2952. [Google Scholar]
  24. Torres, C. A., Iwasaki, A., Barber, B. H. & Robinson, H. L. (1997). Differential dependence on target site tissue for gene gun and intramuscular DNA immunizations. Journal of Immunology 158, 4529-4532. [Google Scholar]
  25. Ulmer, J. B., Donnelly, J. J., Parker, S. E., Rhodes, G. H., Felgner, P. l., Dwarki, V. J., Gromkowski, S. H., Deck, R. R., DeWitt, C., Friedman, A., Hawe, K. R., Leander, K. R., Martinez, D., Perry, H. C., Shiver, J. W., Montgomery, D. L. & Liu, M. A. (1993). Heterologous protection against influenza by injection of DNA encoding a viral protein.Science 259, 1748-1749. [Google Scholar]
  26. Ulmer, J. B., Deck, R. R., DeWitt, C. M., Friedman, A., Donnelly, J. J. & Liu, M. A. (1994). Protective immunity by intramuscular injection of low doses of influenza virus DNA vaccines. Vaccine 12, 1541-1544.[CrossRef] [Google Scholar]
  27. Webster, R. G. (1999). Potential advantages of DNA immunization for influenza epidemic and pandemic planning.Clinical Infectious Diseases 28, 225-229.[CrossRef] [Google Scholar]
  28. Webster, R. G., Fynan, E. F., Santoro, J. C. & Robinson, H. (1994). Protection of ferrets against influenza challenge with a DNA vaccine to the haemagglutinin. Vaccine 12, 1495-1498.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-7-1737
Loading
/content/journal/jgv/10.1099/0022-1317-81-7-1737
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error