Caspases are not involved in the cleavage of translation initiation factor eIF4GI during picornavirus infection Free

Abstract

Infection of cells by many picornaviruses results in the rapid inhibition of cellular protein synthesis due to cleavage of the translation initiation factor eIF4G. The poliovirus (PV) 2A and foot-and-mouth disease virus (FMDV) L proteases are each sufficient to mediate this cleavage, but the cleavage mechanism may be indirect, involving an unidentified cellular protease(s). eIF4G is also targetted for cleavage by caspase-3 during apoptosis. Here, it is shown that caspase inhibitors do not inhibit the cleavage of eIF4GI during PV or FMDV infection. Similarly, in transient-expression studies, the cleavage of eIF4GI induced by PV 2A or FMDV L was unaffected by these inhibitors. Furthermore, the cleavage of eIF4GI was observed in PV-infected MCF-7 cells lacking caspase-3. These data, and the fact that induction of apoptosis yields different eIF4GI cleavage fragments, indicate that caspases do not have a major role in the cleavage of eIF4GI during PV or FMDV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-7-1703
2000-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/7/0811703a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-7-1703&mimeType=html&fmt=ahah

References

  1. Agol, V. I., Belov, G. A., Bienz, K., Egger, D., Kolesnikova, M. S., Raikhlin, N. T., Romanova, L. I., Smirnova, E. A. & Tolskaya, E. A. (1998). Two types of death of poliovirus-infected cells: caspase involvement in the apoptosis but not cytopathic effect. Virology 252, 343-353.[CrossRef] [Google Scholar]
  2. Ashkenazi, A. & Dixit, V. M. (1999). Apoptosis control by death and decoy receptors. Current Opinion in Cell Biology 11, 255-260.[CrossRef] [Google Scholar]
  3. Belsham, G. J. & Sonenberg, N. (1996). RNA–protein interactions in regulation of picornavirus RNA translation. Microbiological Reviews 60, 499-511. [Google Scholar]
  4. Belsham, G. J., McInerney, G. M. & Ross-Smith, N. (2000). Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. Journal of Virology 74, 272-280.[CrossRef] [Google Scholar]
  5. Bonneau, A.-M. & Sonenberg, N. (1987). Proteolysis of the p220 component of the cap-binding protein complex is not sufficient for complete inhibition of host cell protein synthesis after poliovirus infection. Journal of Virology 61, 986-991. [Google Scholar]
  6. Borman, A. M., Kirchweger, R., Ziegler, E., Rhoads, R. E., Skern, T. & Kean, K. M. (1997). eIF4G and its proteolytic cleavage products: effect on initiation of protein synthesis from capped, uncapped, and IRES-containing mRNAs. RNA 3, 186-196. [Google Scholar]
  7. Bovee, M. L., Marissen, W. E., Zamora, M. & Lloyd, R. E. (1998a). The predominant eIF4G-specific cleavage activity in poliovirus-infected HeLa cells is distinct from 2A protease. Virology 245, 229-240.[CrossRef] [Google Scholar]
  8. Bovee, M. L., Lamphear, B. J., Rhoads, R. E. & Lloyd, R. E. (1998b). Direct cleavage of eIF4G by poliovirus 2A protease is inefficient in vitro. Virology 245, 241-249.[CrossRef] [Google Scholar]
  9. Bushell, M., McKendrick, L., Janicke, R. U., Clemens, M. J. & Morley, S. J. (1999). Caspase-3 is necessary and sufficient for cleavage of protein synthesis eukaryotic initiation factor 4G during apoptosis. FEBS Letters 451, 332-336.[CrossRef] [Google Scholar]
  10. Carthy, C. M., Granville, D. J., Watson, K. A., Anderson, D. R., Wilson, J. E., Yang, D. C., Hunt, D. W. C. & McManus, B. M. (1998). Caspase activation and specific cleavage of substrates after coxsackievirus B3-induced cytopathic effect in HeLa cells. Journal of Virology 72, 7669-7675. [Google Scholar]
  11. Chow, S. C., Weis, M., Kass, G. E. N., Holmström, T. H., Eriksson, J. E. & Orrenius, S. (1995). Involvement of multiple proteases during Fas-mediated apoptosis in T lymphocytes. FEBS Letters 364, 134-138.[CrossRef] [Google Scholar]
  12. Clemens, M. J., Bushell, M. & Morley, S. J. (1998). Degradation of eukaryotic polypeptide chain initiation factor (eIF) 4G in response to induction of apoptosis in human lymphoma cell lines. Oncogene 17, 2921-2931.[CrossRef] [Google Scholar]
  13. Devaney, M. A., Vakharia, V. N., Lloyd, R. E., Ehrenfeld, E. & Grubman, M. J. (1988). Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. Journal of Virology 62, 4407-4409. [Google Scholar]
  14. Etchison, D. & Fout, S. (1985). Human rhinovirus 14 infection of HeLa cells results in the proteolytic cleavage of the p220 cap-binding complex subunit and inactivates globin mRNA translation in vitro. Journal of Virology 54, 634-638. [Google Scholar]
  15. Etchison, D., Milburn, S., Edery, I., Sonenberg, N. & Hershey, J. W. B. (1982). Inhibition of HeLa cell protein synthesis following picornavirus infection correlates with the proteolysis of a 220,000 dalton polypeptide associated with eukaryotic initiation factor 3 and a cap-binding complex. Journal of Biological Chemistry 257, 14806-14810. [Google Scholar]
  16. Fuerst, T. R., Niles, E. G., Studier, F. W. & Moss, B. (1986). Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences, USA 83, 8122-8126.[CrossRef] [Google Scholar]
  17. Gradi, A., Imataka, H., Svitkin, Y. V., Rom, E., Raught, B., Morino, S. & Sonenberg, N. (1998). A novel functional human eukaryotic translation initiation factor 4G. Molecular Cell Biology 18, 334-342. [Google Scholar]
  18. Green, D. R. & Reed, J. C. (1998). Mitochondria and apoptosis. Science 281, 1309-1312.[CrossRef] [Google Scholar]
  19. Haghighat, A. & Sonenberg, N. (1997). eIF4G dramatically enhances the binding of eIF4E to the mRNA 5′-cap structure. Journal of Biological Chemistry 272, 21677-21680.[CrossRef] [Google Scholar]
  20. Imataka, H., Gradi, A. & Sonenberg, N. (1998). A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO Journal 17, 7480-7489.[CrossRef] [Google Scholar]
  21. Jackson, R. J., Hunt, S. L., Gibbs, C. L. & Kaminski, A. (1994). Internal initiation of translation of picornavirus RNAs. Molecular Biology Reports 19, 147-159.[CrossRef] [Google Scholar]
  22. Jänicke, R. U., Sprengart, M. L., Wati, M. R. & Porter, A. G. (1998). Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. Journal of Biological Chemistry 273, 9357-9360.[CrossRef] [Google Scholar]
  23. Jones, R. A., Johnson, V. L., Buck, N. R., Dobrota, M., Hinton, R. H., Chow, S. C. & Kass, G. E. N. (1998). Fas-mediated apoptosis in mouse hepatocytes involves the processing and activation of caspases. Hepatology 27, 1632-1642.[CrossRef] [Google Scholar]
  24. Kaminski, A., Howell, M. T. & Jackson, R. J. (1990). Initiation of encephalomyocarditis virus RNA translation: the authentic initiation site is not selected by a scanning mechanism. EMBO Journal 9, 3753-3759. [Google Scholar]
  25. Kirchweger, R., Ziegler, E., Lamphear, B. J., Waters, D., Liebig, H. D., Sommergruber, W., Sobrino, F., Hohenadl, C., Blaas, D., Rhoads, R. E. & Skern, T. (1994). Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on eIF-4 gamma. Journal of Virology 68, 5677-5684. [Google Scholar]
  26. Kräusslich, H.-G., Nicklin, M. J. H., Toyoda, H., Etchison, D. & Wimmer, E. (1987). Poliovirus proteinase 2A induces cleavage of eucaryotic initiation factor 4F polypeptide p220. Journal of Virology 61, 2711-2718. [Google Scholar]
  27. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef] [Google Scholar]
  28. Lamphear, B. J., Kirchweger, R., Skern, T. & Rhoads, R. E. (1995). Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. Journal of Biological Chemistry 270, 21975-21983.[CrossRef] [Google Scholar]
  29. Lloyd, R. E., Toyoda, H., Etchison, D., Wimmer, E. & Ehrenfeld, E. (1986). Cleavage of the cap binding protein complex p220 is not effected by the second poliovirus protease 2A. Virology 150, 229-303. [Google Scholar]
  30. Lloyd, R. E., Grubman, M. J. & Ehrenfeld, E. (1988). Relationship of p220 cleavage during picornavirus infection to 2A proteinase sequences. Journal of Virology 62, 4216-4223. [Google Scholar]
  31. MacFarlane, M., Ahmad, M., Srinivasula, S. M., Fernandes-Alnemri, T., Cohen, G. M. & Alnemri, E. S. (1997). Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. Journal of Biological Chemistry 272, 25417-25420.[CrossRef] [Google Scholar]
  32. Marissen, W. E. & Lloyd, R. E. (1998). Eukaryotic translation initiation factor 4G is targeted for proteolytic cleavage by caspase 3 during inhibition of translation in apoptotic cells. Molecular Cell Biology 18, 7565-7574. [Google Scholar]
  33. Medina, M., Domingo, E., Brangwyn, J. K. & Belsham, G. J. (1993). The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology 194, 355-359.[CrossRef] [Google Scholar]
  34. Morley, S. J., McKendrick, L. & Bushell, M. (1998). Cleavage of translation initiation factor 4G (eIF4G) during anti-Fas IgM-induced apoptosis does not require signalling through the p38 mitogen-activated protein (MAP) kinase. FEBS Letters 438, 41-48.[CrossRef] [Google Scholar]
  35. Ohlmann, T., Rau, M., Pain, V. M. & Morley, S. J. (1996). The C-terminal domain of eukaryotic protein synthesis initiation factor (eIF) 4G is sufficient to support cap-independent translation in the absence of eIF4E. EMBO Journal 15, 1371-1382. [Google Scholar]
  36. Roberts, L. O., Seamons, R. A. & Belsham, G. J. (1998). Recognition of picornavirus internal ribosome entry sites within cells; influence of cellular and viral proteins. RNA 4, 520-529.[CrossRef] [Google Scholar]
  37. Ryan, M. D. & Flint, M. (1997). Virus-encoded proteinases of the picornavirus super-group. Journal of General Virology 78, 699-723. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-7-1703
Loading
/content/journal/jgv/10.1099/0022-1317-81-7-1703
Loading

Data & Media loading...

Most cited Most Cited RSS feed