Bovine spongiform encephalopathy (BSE) is a prion-associated disease where the infectious agent is thought to be a host-encoded protein with a protease-resistant conformation (PrP). Here, data are presented on the solubilization of purified murine BSE material, using guanidine–HCl as a denaturing agent. This treatment led to loss of infectivity, which was partially recovered on renaturation after dialysis to remove the chaotropic agent. The renatured product was then fractionated on an isopycnic sucrose-density gradient and the fractions were analysed for the presence of PrP, nucleic acids and infectivity. It was found that the major part of PrP (>90%) and the endogenous nucleic acids did not contribute towards the formation of infectious particles on renaturation. Infectivity was distributed in the top three, low-density fractions. Among these, the presence of considerable infectivity in the fraction of lowest density, with barely detectable PrP, is of particular interest.


Article metrics loading...

Loading full text...

Full text loading...



  1. Akowitz, A., Sklaviadis, T. & Manuelidis, L. (1994). Endogenous viral complexes with long RNA cosediment with the agent of Creutzfeldt–Jakob disease. Nucleic Acids Research 22, 1101-1107.[CrossRef] [Google Scholar]
  2. Alper, T., Haig, D. A. & Clarke, M. C. (1966). The exceptionally small size of the scrapie agent. Biochemical and Biophysical Research Communications 22, 278-284.[CrossRef] [Google Scholar]
  3. Brown, P., Liberski, P. P., Wolff, A. & Gajdusek, D. C. (1990). Conservation of infectivity in purified fibrillary extracts of scrapie-infected hamster brain after sequential enzymatic digestion or polyacrylamide gel electrophoresis. Proceedings of the National Academy of Sciences, USA 87, 7240-7244.[CrossRef] [Google Scholar]
  4. Bruce, M., Chree, A., McConnell, I., Foster, J., Pearson, G. & Fraser, H. (1994). Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Philosophical Transactions of the Royal Society of London Series B 343, 405-411.[CrossRef] [Google Scholar]
  5. Bueler, H., Raeber, A., Sailer, A., Fischer, M., Aguzzi, A. & Weissmann, C. (1994). High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Molecular Medicine 1, 19-30. [Google Scholar]
  6. Caughey, B., Raymond, G. J., Kocisko, D. A. & Lansbury, P. T.Jr (1997). Scrapie infectivity correlates with converting activity, protease resistance, and aggregation of scrapie-associated prion protein in guanidine denaturation studies. Journal of Virology 71, 4107-4110. [Google Scholar]
  7. Gasset, M., Baldwin, M. A., Fletterick, R. J. & Prusiner, S. B. (1993). Perturbation of the secondary structure of the scrapie prion protein under conditions that alter infectivity. Proceedings of the National Academy of Sciences, USA 90, 1-5.[CrossRef] [Google Scholar]
  8. Hill, A. F., Antoniou, M. & Collinge, J. (1999). Protease-resistant prion protein produced in vitro lacks detectable infectivity. Journal of General Virology 80, 11-14. [Google Scholar]
  9. Kaneko, K., Peretz, D., Pan, K. M., Blochberger, T. C., Wille, H., Gabizon, R., Griffith, O. H., Cohen, F. E., Baldwin, M. A. & Prusiner, S. B. (1995). Prion protein (PrP) synthetic peptides induce cellular PrP to acquire properties of the scrapie isoform. Proceedings of the National Academy of Sciences, USA 92, 11160-11164.[CrossRef] [Google Scholar]
  10. Kascsak, R. J., Fersko, R., Pulgiano, D., Rubenstein, R. & Carp, R. I. (1997). Immunodiagnosis of prion disease. Immunological Investigations 26, 259-268.[CrossRef] [Google Scholar]
  11. Kellings, K., Meyer, N., Mirenda, C., Prusiner, S. B. & Riesner, D. (1992). Further analysis of nucleic acids in purified scrapie prion preparations by improved return refocusing gel electrophoresis. Journal of General Virology 73, 1025-1029.[CrossRef] [Google Scholar]
  12. Kocisko, D. A., Come, J. H., Priola, S. A., Chesebro, B., Raymond, G. J., Lansbury, P. T. & Caughey, B. (1994). Cell-free formation of protease-resistant prion protein. Nature 370, 471-474.[CrossRef] [Google Scholar]
  13. Kocisko, D. A., Lansbury, P. T.Jr & Caughey, B. (1996). Partial unfolding and refolding of scrapie-associated prion protein: evidence for a critical 16-kDa C-terminal domain. Biochemistry 35, 13434-13442.[CrossRef] [Google Scholar]
  14. Lasmezas, C. I., Deslys, J. P., Robain, O., Jaegly, A., Beringue, V., Peyrin, J. M., Fournier, J. G., Hauw, J. J., Rossier, J. & Dormont, D. (1997). Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science 275, 402-405.[CrossRef] [Google Scholar]
  15. Manuelidis, L., Sklaviadis, T., Akowitz, A. & Fritch, W. (1995). Viral particles are required for infection in neurodegenerative Creutzfeldt–Jakob disease. Proceedings of the National Academy of Sciences, USA 92, 5124-5128.[CrossRef] [Google Scholar]
  16. Millson, G. C. & Manning, E. J. (1979). The effect of selected detergents on scrapie infectivity. In Slow Transmissible Diseases of the Nervous System, pp. 409-424. Edited by S. B. Prusiner & W. J. Hadlow. New York: Academic Press.
  17. Prusiner, S. B. (1982). Novel proteinaceous infectious particles cause scrapie. Science 216, 136-144.[CrossRef] [Google Scholar]
  18. Prusiner, S. B., Groth, D. F., Cochran, S. P., Masiarz, F. R., McKinley, M. P. & Martinez, H. M. (1980). Molecular properties, partial purification, and assay by incubation period measurements of the hamster scrapie agent. Biochemistry 19, 4883-4891.[CrossRef] [Google Scholar]
  19. Prusiner, S. B., Bolton, D. C., Groth, D. F., Bowman, K. A., Cochran, S. P. & McKinley, M. P. (1982). Further purification and characterization of scrapie prions. Biochemistry 21, 6942-6950.[CrossRef] [Google Scholar]
  20. Prusiner, S. B., Groth, D., Serban, A., Stahl, N. & Gabizon, R. (1993). Attempts to restore scrapie prion infectivity after exposure to protein denaturants. Proceedings of the National Academy of Sciences, USA 90, 2793-2797.[CrossRef] [Google Scholar]
  21. Riesner, D., Kellings, K., Post, K., Wille, H., Serban, H., Groth, D., Baldwin, M. A. & Prusiner, S. B. (1996). Disruption of prion rods generates 10-nm spherical particles having high α-helical content and lacking scrapie infectivity. Journal of Virology 70, 1714-1722. [Google Scholar]
  22. Safar, J., Roller, P. P., Gajdusek, D. C. & Gibbs, C. J.Jr (1993). Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. Journal of Biological Chemistry 268, 20276-20284. [Google Scholar]
  23. Sklaviadis, T. K., Manuelidis, L. & Manuelidis, E. E. (1989). Physical properties of the Creutzfeldt–Jakob disease agent. Journal of Virology 63, 1212-1222. [Google Scholar]
  24. Sklaviadis, T., Akowitz, A., Manuelidis, E. E. & Manuelidis, L. (1990). Nuclease treatment results in high specific purification of Creutzfeldt–Jacob disease infectivity with a density characteristic of nucleic acid–protein complexes. Archives of Virology 112, 215-228.[CrossRef] [Google Scholar]
  25. Somerville, R. A. & Dunn, A. J. (1996). The association between PrP and infectivity in scrapie and BSE infected mouse brain. Archives of Virology 141, 275-289.[CrossRef] [Google Scholar]
  26. Weiss, S., Proske, D., Neumann, M., Groschup, M. H., Kretzschmar, H. A., Famulok, M. & Winnacker, E. L. (1997). RNA aptamers specifically interact with the prion protein PrP. Journal of Virology 71, 8790-8797. [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error