The GCD10 subunit of yeast eIF-3 binds the methyltransferase-like domain of the 126 and 183 kDa replicase proteins of tobacco mosaic virus in the yeast two-hybrid system Free

Abstract

The tobacco mosaic virus (TMV) replicase complex contains virus- and host-encoded proteins. In tomato, one of these host proteins was reported previously to be related serologically to the GCD10 subunit of yeast eIF-3. The yeast two-hybrid system has now been used to show that yeast GCD10 interacts selectively with the methyltransferase domain shared by the 126 and 183 kDa TMV replicase proteins. These findings are consistent with a role for a GCD10-like protein in the TMV replicase complex and suggest that, in TMV-infected cells, the machinery of virus replication and protein synthesis may be closely connected.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-6-1587
2000-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/6/0811587a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-6-1587&mimeType=html&fmt=ahah

References

  1. Ahlquist, P., Strauss, E. G., Rice, C. M., Strauss, J. H., Haseloff, J. & Zimmern, D. (1985). Sindbis virus proteins nsP1 and nsP2 contain homology to nonstructural proteins from several RNA plant viruses. Journal of Virology 53, 536-542. [Google Scholar]
  2. Argos, P. (1988). A sequence motif in many polymerases. Nucleic Acids Research 16, 9909-9916.[CrossRef] [Google Scholar]
  3. Barton, D. J., Sawicki, S. G. & Sawicki, D. L. (1991). Solubilization and immunoprecipitation of alphavirus replication complexes. Journal of Virology 65, 1496-1506. [Google Scholar]
  4. Bates, H. J., Farjah, M., Osman, T. A. M. & Buck, K. W. (1995). Isolation and characterization of an RNA-dependent RNA polymerase from Nicotiana clevelandii plants infected with red clover necrotic mosaic dianthovirus. Journal of General Virology 76, 1483-1491.[CrossRef] [Google Scholar]
  5. Blumenthal, T. & Carmichael, G. G. (1979). RNA replication: function and structure of Qβ-replicase. Annual Review of Biochemistry 48, 525-548.[CrossRef] [Google Scholar]
  6. Breeden, L. & Nasmyth, K. (1985). Regulation of the yeast HO gene. Cold Spring Harbor Symposia on Quantitative Biology 50, 643-650.[CrossRef] [Google Scholar]
  7. Buck, K. W. (1996). Comparison of the replication of positive-stranded RNA viruses of plants and animals. Advances in Virus Research 47, 159-251. [Google Scholar]
  8. Carr, J. P., Marsh, L. E., Lomonossoff, G. P., Sekiya, M. E. & Zaitlin, M. (1992). Resistance to tobacco mosaic virus induced by the 54-kDa gene sequence requires expression of the 54-kDa protein. Molecular Plant–Microbe Interactions 5, 397-404.[CrossRef] [Google Scholar]
  9. Dorssers, L., Van der Krol, S., Van der Meer, J., Van Kammen, A. & Zabel, P. (1984). Purification of cowpea mosaic virus RNA replication complex: identification of a virus-encoded 110,000-dalton polypeptide responsible for RNA chain elongation. Proceedings of the National Academy of Sciences, USA 81, 1951-1955.[CrossRef] [Google Scholar]
  10. Dunigan, D. D. & Zaitlin, M. (1990). Capping of tobacco mosaic virus RNA. Analysis of viral-coded guanylyltransferase-like activity. Journal of Biological Chemistry 265, 7779-7786. [Google Scholar]
  11. Estojak, J., Brent, R. & Golemis, E. A. (1995). Correlation of two-hybrid affinity data with in vitro measurements. Molecular and Cellular Biology 15, 5820-5829. [Google Scholar]
  12. Faure, J. D., Gingerich, D. & Howell, S. H. (1998). An Arabidopsis immunophilin, AtFKBP12, binds to AtFIP37 (FKBP interacting protein) in an interaction that is disrupted by FK506. Plant Journal 15, 783-789.[CrossRef] [Google Scholar]
  13. Garcia-Barrio, M. T., Naranda, T., Vazquez de Aldana, C. R., Cuesta, R., Hinnebusch, A. G., Hershey, J. W. B. & Tamame, M. (1995). GCD10, a translational repressor of GCN4, is the RNA-binding subunit of eukaryotic translation initiation factor-3. Genes & Development 9, 1781-1796.[CrossRef] [Google Scholar]
  14. Gietz, R. D. & Schiestl, R. H. (1995). Transforming yeast with DNA. Methods in Molecular and Cellular Biology 5, 255-269. [Google Scholar]
  15. Golemboski, D. B., Lomonossoff, G. P. & Zaitlin, M. (1990). Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proceedings of the National Academy of Sciences, USA 87, 6311-6315.[CrossRef] [Google Scholar]
  16. Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P. & Blinov, V. M. (1988). A novel superfamily of nucleoside triphosphate-binding motif containing proteins which are probably involved in duplex unwinding in DNA and RNA replication and recombination. FEBS Letters 235, 16-24.[CrossRef] [Google Scholar]
  17. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805-816.[CrossRef] [Google Scholar]
  18. Haseloff, J., Goelet, P., Zimmern, D., Ahlquist, P., Dasgupta, R. & Kaesberg, P. (1984). Striking similarities in amino acid sequence among nonstructural proteins encoded by RNA viruses that have dissimilar genomic organization. Proceedings of the National Academy of Sciences, USA 81, 4358-4362.[CrossRef] [Google Scholar]
  19. Hayes, R. J. & Buck, K. W. (1990). Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell 63, 363-368.[CrossRef] [Google Scholar]
  20. Hodgman, T. C. (1988). A new superfamily of replicative proteins. Nature 333, 22-23. [Google Scholar]
  21. Ishikawa, M., Meshi, T., Motoyoshi, F., Takamatsu, N. & Okada, Y. (1986). In vitro mutagenesis of the putative replicase genes of tobacco mosaic virus. Nucleic Acids Research 14, 8291-8305.[CrossRef] [Google Scholar]
  22. Ishikawa, M., Meshi, T., Ohno, T. & Okada, Y. (1991). Specific cessation of minus-strand RNA accumulation at an early stage of tobacco mosaic virus infection. Journal of Virology 65, 861-868. [Google Scholar]
  23. Kao, C. C. & Ahlquist, P. (1992). Identification of the domains required for direct interaction of the helicase-like and polymerase-like RNA replication proteins of brome mosaic virus. Journal of Virology 66, 7293-7302. [Google Scholar]
  24. Koonin, E. V. & Dolja, V. V. (1993). Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Critical Reviews in Biochemistry and Molecular Biology 28, 375-430.[CrossRef] [Google Scholar]
  25. Li, L., Elledge, S. J., Peterson, C. A., Bales, E. S. & Legerski, R. J. (1994). Specific association between the human DNA repair proteins XPA and ERCC1. Proceedings of the National Academy of Sciences, USA 91, 5012-5016.[CrossRef] [Google Scholar]
  26. Mouches, C., Candresse, T. & Bove, J. M. (1984). Turnip yellow mosaic virus RNA replicase contains host- and virus-encoded subunits. Virology 134, 78-91.[CrossRef] [Google Scholar]
  27. Ohno, T., Aoyagi, M., Yamanashi, Y., Saito, H., Ikawa, S., Meshi, T. & Okada, Y. (1984). Nucleotide sequence of the tobacco mosaic virus (tomato strain) genome and comparison with the common strain genome. Journal of Biochemistry 96, 1915-1923. [Google Scholar]
  28. O’Reilly, E. K., Tang, N., Ahlquist, P. & Kao, C. C. (1995). Biochemical and genetic analyses of the interaction between the helicase-like and polymerase-like proteins of the brome mosaic virus. Virology 214, 59-71.[CrossRef] [Google Scholar]
  29. O’Reilly, E. K., Wang, Z., French, R. & Kao, C. C. (1998). Interactions between the structural domains of the RNA replication proteins of plant-infecting RNA viruses. Journal of Virology 72, 7160-7169. [Google Scholar]
  30. Osman, T. A. M. & Buck, K. W. (1997). The tobacco mosaic virus RNA polymerase complex contains a plant protein related to the RNA-binding subunit of yeast eIF-3. Journal of Virology 71, 6075-6082. [Google Scholar]
  31. Pelham, H. R. B. (1978). Leaky UAG termination codon in tobacco mosaic virus RNA. Nature 272, 469-471.[CrossRef] [Google Scholar]
  32. Quadt, R. & Jaspars, E. M. J. (1990). Purification and characterization of brome mosaic virus RNA-dependent RNA polymerase. Virology 178, 189-194.[CrossRef] [Google Scholar]
  33. Quadt, R., Kao, C. C., Browning, K. S., Hershberger, R. P. & Ahlquist, P. (1993). Characterization of a host protein associated with brome mosaic virus RNA-dependent RNA polymerase. Proceedings of the National Academy of Sciences, USA 90, 1498-1502.[CrossRef] [Google Scholar]
  34. Smirnyagina, E., Lin, N. S. & Ahlquist, P. (1996). The polymerase-like core of brome mosaic virus 2a protein, lacking a region interacting with viral 1a protein in vitro, maintains activity and 1a selectivity in RNA replication. Journal of Virology 70, 4729-4736. [Google Scholar]
  35. Sulzinski, M. A., Gabard, K. A., Palukaitis, P. & Zaitlin, M. (1985). Replication of tobacco mosaic virus. VIII. Characterization of a third subgenomic TMV RNA. Virology 145, 132-140.[CrossRef] [Google Scholar]
  36. Taylor, D. N. (1999).Yeast two-hybrid studies with tobacco mosaic virus replicase proteins. PhD thesis, University of Cambridge, UK.
  37. Watanabe, T., Honda, A., Iwata, A., Ueda, S., Hibi, T. & Ishihama, A. (1999). Isolation from tobacco mosaic virus-infected tobacco of a solubilized template-specific RNA-dependent RNA polymerase containing a 126K/183K protein heterodimer. Journal of Virology 73, 2633-2640. [Google Scholar]
  38. Yocum, R. R., Hanley, S., West, R.Jr & Ptashne, M. (1984). Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1–GAL10 promoter in Saccharomyces cerevisiae. Molecular and Cellular Biology 4, 1985-1998. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-6-1587
Loading
/content/journal/jgv/10.1099/0022-1317-81-6-1587
Loading

Data & Media loading...

Most cited Most Cited RSS feed