1887

Abstract

Terminal differentiation of embryonal carcinoma cells and monocytes has been shown to be important for their permissiveness for human cytomegalovirus (HCMV) infection, even though such terminally differentiated cells have withdrawn from the cell cycle and are, essentially, in G arrest. Recently, data from a number of laboratories have shown that productive infection with HCMV of quiescent fibroblasts held reversibly in G of the cell cycle can result in cell cycle progression, which results eventually in cycle arrest. In contrast to quiescent fibroblasts, the effect of HCMV on cells that have withdrawn irreversibly from the cell cycle due to terminal differentiation has not, so far, been addressed. Here, it is shown that, in cells that have arrested in G as a result of terminal differentiation, HCMV is able to induce cell functions associated with progression of the cell cycle through G into early S phase. This progression is correlated with a direct physical and functional interaction between the HCMV 86 kDa major immediate-early protein (IE86) and the cyclin-dependent kinase inhibitor p21.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-6-1553
2000-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/6/0811553a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-6-1553&mimeType=html&fmt=ahah

References

  1. Albert, D. A. & Gudas, L. J. (1986). Selection and characterization of mutant S49 T-lymphoma cell lines resistant to phosphonoformic acid: evidence for inhibition of ribonucleotide reductase.Journal of Cellular Physiology 127, 281-287.[CrossRef] [Google Scholar]
  2. Albrecht, T., Nachtigal, M., St Jeor, S. C. & Rapp, F. (1976). Induction of cellular DNA synthesis and increased mitotic activity in Syrian hamster embryo cells abortively infected with human cytomegalovirus.Journal of General Virology 30, 167-177.[CrossRef] [Google Scholar]
  3. Boldogh, I., AbuBakar, S. & Albrecht, T. (1990). Activation of proto-oncogenes: an immediate early event in human cytomegalovirus infection.Science 247, 561-564.[CrossRef] [Google Scholar]
  4. Bresnahan, W. A., Boldogh, I., Thompson, E. A. & Albrecht, T. (1996). Human cytomegalovirus inhibits cellular DNA synthesis and arrests productively infected cells in late G1.Virology 224, 150-160.[CrossRef] [Google Scholar]
  5. Buchkovich, K., Duffy, L. A. & Harlow, E. (1989). The retinoblastoma protein is phosphorylated during specific phases of the cell cycle.Cell 58, 1097-1105.[CrossRef] [Google Scholar]
  6. Caswell, R., Hagemeier, C., Chiou, C.-J., Hayward, G., Kouzarides, T. & Sinclair, J. (1993). The human cytomegalovirus 86K immediate early (IE) 2 protein requires the basic region of the TATA-box binding protein (TBP) for binding, and interacts with TBP and transcription factor TFIIB via regions of IE2 required for transcriptional regulation.Journal of General Virology 74, 2691-2698.[CrossRef] [Google Scholar]
  7. Caswell, R., Bryant, L. & Sinclair, J. (1996). Human cytomegalovirus immediate-early 2 (IE2) protein can transactivate the human hsp70 promoter by alleviation of Dr1-mediated repression.Journal of Virology 70, 4028-4037. [Google Scholar]
  8. Chen, P. L., Scully, P., Shew, J. Y., Wang, J. Y. & Lee, W. H. (1989). Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation.Cell 58, 1193-1198.[CrossRef] [Google Scholar]
  9. Chen, J., Peters, R., Saha, P., Lee, P., Theodoras, A., Pagano, M., Wagner, G. & Dutta, A. (1996). A 39 amino acid fragment of the cell cycle regulator p21 is sufficient to bind PCNA and partially inhibit DNA replication in vivo.Nucleic Acids Research 24, 1727-1733.[CrossRef] [Google Scholar]
  10. Cherrington, J. M. & Mocarski, E. S. (1989). Human cytomegalovirus ie1 transactivates the alpha promoter-enhancer via an 18-base-pair repeat element.Journal of Virology 63, 1435-1440. [Google Scholar]
  11. Cherrington, J. M., Khoury, E. L. & Mocarski, E. S. (1991). Human cytomegalovirus ie2 negatively regulates alpha gene expression via a short target sequence near the transcription start site.Journal of Virology 65, 887-896. [Google Scholar]
  12. Colberg-Poley, A. M., Santomenna, L. D., Harlow, P. P., Benfield, P. A. & Tenney, D. J. (1992). Human cytomegalovirus US3 and UL36–38 immediate-early proteins regulate gene expression.Journal of Virology 66, 95-105. [Google Scholar]
  13. Cordon-Cardo, C. (1995). Mutations of cell cycle regulators. Biological and clinical implications for human neoplasia.American Journal of Pathology 147, 545-560. [Google Scholar]
  14. Crescenzi, M., Soddu, S. & Tato, F. (1995). Mitotic cycle reactivation in terminally differentiated cells by adenovirus infection.Journal of Cellular Physiology 162, 26-35.[CrossRef] [Google Scholar]
  15. DeCaprio, J. A., Ludlow, J. W., Figge, J., Shew, J. Y., Huang, C. M., Lee, W. H., Marsilio, E., Paucha, E. & Livingston, D. M. (1988). SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene.Cell 54, 275-283.[CrossRef] [Google Scholar]
  16. DeCaprio, J. A., Furukawa, Y., Ajchenbaum, F., Griffin, J. D. & Livingston, D. M. (1992). The retinoblastoma-susceptibility gene product becomes phosphorylated in multiple stages during cell cycle entry and progression.Proceedings of the National Academy of Sciences, USA 89, 1795-1798.[CrossRef] [Google Scholar]
  17. Dittmer, D. & Mocarski, E. S. (1997). Human cytomegalovirus infection inhibits G1/S transition.Journal of Virology 71, 1629-1634. [Google Scholar]
  18. el-Deiry, W. S., Tokino, T., Waldman, T., Oliner, J. D., Velculescu, V. E., Burrell, M., Hill, D. E., Healy, E., Rees, J. L., Hamilton, S. R. and others (1995). Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Research 55, 2910–2919. [Google Scholar]
  19. Funk, J. O., Waga, S., Harry, J. B., Espling, E., Stillman, B. & Galloway, D. A. (1997). Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein.Genes & Development 11, 2090-2100.[CrossRef] [Google Scholar]
  20. Geist, L. J. & Dai, L. Y. (1996). Cytomegalovirus modulates interleukin-6 gene expression.Transplantation 62, 653-658.[CrossRef] [Google Scholar]
  21. Gonczol, E., Andrews, P. W. & Plotkin, S. A. (1984). Cytomegalovirus replicates in differentiated but not in undifferentiated human embryonal carcinoma cells.Science 224, 159-161.[CrossRef] [Google Scholar]
  22. Goodrich, D. W., Wang, N. P., Qian, Y. W., Lee, E. Y. & Lee, W. H. (1991). The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle.Cell 67, 293-302.[CrossRef] [Google Scholar]
  23. Griffiths, P. D. & Grundy, J. E. (1988). The status of CMV as a human pathogen.Epidemiology and Infection 100, 1-15.[CrossRef] [Google Scholar]
  24. Hagemeier, C., Walker, S., Caswell, R., Kouzarides, T. & Sinclair, J. (1992a). The human cytomegalovirus 80-kilodalton but not the 72-kilodalton immediate-early protein transactivates heterologous promoters in a TATA box-dependent mechanism and interacts directly with TFIID.Journal of Virology 66, 4452-4456. [Google Scholar]
  25. Hagemeier, C., Walker, S. M., Sissons, P. J. G. & Sinclair, J. H. (1992b). The 72K IE1 and 80K IE2 proteins of human cytomegalovirus independently trans-activate the c-fos, c-myc and hsp70 promoters via basal promoter elements.Journal of General Virology 73, 2385-2393.[CrossRef] [Google Scholar]
  26. Hagemeier, C., Caswell, R., Hayhurst, G., Sinclair, J. & Kouzarides, T. (1994). Functional interaction between the HCMV IE2 transactivator and the retinoblastoma protein.EMBO Journal 13, 2897-2903. [Google Scholar]
  27. Harel, N. Y. & Alwine, J. C. (1998). Phosphorylation of the human cytomegalovirus 86-kilodalton immediate-early protein IE2.Journal of Virology 72, 5481-5492. [Google Scholar]
  28. Hayhurst, G. P., Bryant, L. A., Caswell, R. C., Walker, S. M. & Sinclair, J. H. (1995). CCAAT box-dependent activation of the TATA-less human DNA polymerase alpha promoter by the human cytomegalovirus 72-kilodalton major immediate-early protein.Journal of Virology 69, 182-188. [Google Scholar]
  29. Hinds, P. W., Mittnacht, S., Dulic, V., Arnold, A., Reed, S. I. & Weinberg, R. A. (1992). Regulation of retinoblastoma protein functions by ectopic expression of human cyclins.Cell 70, 993-1006.[CrossRef] [Google Scholar]
  30. Hu, Q. J., Dyson, N. & Harlow, E. (1990). The regions of the retinoblastoma protein needed for binding to adenovirus E1A or SV40 large T antigen are common sites for mutations.EMBO Journal 9, 1147-1155. [Google Scholar]
  31. Ilsley, D. D., Lee, S. H., Miller, W. H. & Kuchta, R. D. (1995). Acyclic guanosine analogs inhibit DNA polymerases alpha, delta, and epsilon with very different potencies and have unique mechanisms of action.Biochemistry 34, 2504-2510.[CrossRef] [Google Scholar]
  32. Jault, F. M., Jault, J. M., Ruchti, F., Fortunato, E. A., Clark, C., Corbeil, J., Richman, D. D. & Spector, D. H. (1995). Cytomegalovirus infection induces high levels of cyclins, phosphorylated Rb, and p53, leading to cell cycle arrest.Journal of Virology 69, 6697-6704. [Google Scholar]
  33. Keblusek, P., Dorsman, J. C., Teunisse, A. F. A. S., Teunissen, H., van der Eb, A. J. & Zantema, A. (1999). The adenoviral E1A oncoproteins interfere with the growth-inhibiting effect of the cdk-inhibitor p21CIP1/WAF1.Journal of General Virology 80, 381-390. [Google Scholar]
  34. Kothari, S., Baillie, J., Sissons, J. G. & Sinclair, J. H. (1991). The 21 bp repeat element of the human cytomegalovirus major immediate early enhancer is a negative regulator of gene expression in undifferentiated cells.Nucleic Acids Research 19, 1767-1771.[CrossRef] [Google Scholar]
  35. LaFemina, R. & Hayward, G. S. (1986). Constitutive and retinoic acid-inducible expression of cytomegalovirus immediate-early genes in human teratocarcinoma cells.Journal of Virology 58, 434-440. [Google Scholar]
  36. Lu, M. & Shenk, T. (1996). Human cytomegalovirus infection inhibits cell cycle progression at multiple points, including the transition from G1 to S.Journal of Virology 70, 8850-8857. [Google Scholar]
  37. Maerz, W. J., Baselga, J., Reuter, V. E., Mellado, B., Myers, M. L., Bosl, G. J., Spinella, M. J. & Dmitrovsky, E. (1998). FGF4 dissociates anti-tumorigenic from differentiation signals of retinoic acid in human embryonal carcinomas.Oncogene 17, 761-767.[CrossRef] [Google Scholar]
  38. Mal, A., Piotrkowski, A. & Harter, M. L. (1996a). Cyclin-dependent kinases phosphorylate the adenovirus E1A protein, enhancing its ability to bind pRb and disrupt pRb–E2F complexes.Journal of Virology 70, 2911-2921. [Google Scholar]
  39. Mal, A., Poon, R. Y., Howe, P. H., Toyoshima, H., Hunter, T. & Harter, M. L. (1996b). Inactivation of p27Kip1 by the viral E1A oncoprotein in TGFβ-treated cells.Nature 380, 262-265.[CrossRef] [Google Scholar]
  40. Martin, L. G., Demers, G. W. & Galloway, D. A. (1998). Disruption of the G1/S transition in human papillomavirus type 16 E7-expressing human cells is associated with altered regulation of cyclin E.Journal of Virology 72, 975-985. [Google Scholar]
  41. Monick, M. M., Geist, L. J., Stinski, M. F. & Hunninghake, G. W. (1992). The immediate early genes of human cytomegalovirus upregulate expression of the cellular genes myc and fos.American Journal of Respiratory Cell and Molecular Biology 7, 251-256.[CrossRef] [Google Scholar]
  42. Morin, J., Johann, S., O’Hara, B. & Gluzman, Y. (1996). Exogenous thymidine is preferentially incorporated into human cytomegalovirus DNA in infected human fibroblasts.Journal of Virology 70, 6402-6404. [Google Scholar]
  43. Muganda, P., Mendoza, O., Hernandez, J. & Qian, Q. (1994). Human cytomegalovirus elevates levels of the cellular protein p53 in infected fibroblasts.Journal of Virology 68, 8028-8034. [Google Scholar]
  44. Nelson, J. A. & Groudine, M. (1986). Transcriptional regulation of the human cytomegalovirus major immediate-early gene is associated with induction of DNase I-hypersensitive sites.Molecular and Cellular Biology 6, 452-461. [Google Scholar]
  45. Pines, J. (1993). Cyclins and cyclin-dependent kinases: take your partners.Trends in Biochemical Sciences 18, 195-197.[CrossRef] [Google Scholar]
  46. Pizzorno, M. C., O’Hare, P., Sha, L., LaFemina, R. L. & Hayward, G. S. (1988). Trans-activation and autoregulation of gene expression by the immediate-early region 2 gene products of human cytomegalovirus.Journal of Virology 62, 1167-1179. [Google Scholar]
  47. Pizzorno, M. C., Mullen, M. A., Chang, Y. N. & Hayward, G. S. (1991). The functionally active IE2 immediate-early regulatory protein of human cytomegalovirus is an 80-kilodalton polypeptide that contains two distinct activator domains and a duplicated nuclear localization signal.Journal of Virology 65, 3839-3852. [Google Scholar]
  48. Poma, E. E., Kowalik, T. F., Zhu, L., Sinclair, J. H. & Huang, E. S. (1996). The human cytomegalovirus IE1-72 protein interacts with the cellular p107 protein and relieves p107-mediated transcriptional repression of an E2F-responsive promoter.Journal of Virology 70, 7867-7877. [Google Scholar]
  49. Rao, L., Debbas, M., Sabbatini, P., Hockenbery, D., Korsmeyer, S. & White, E. (1992). The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins.Proceedings of the National Academy of Sciences, USA 89, 7742-7746.[CrossRef] [Google Scholar]
  50. Sabourin, C. L., Reno, J. M. & Boezi, J. A. (1978). Inhibition of eucaryotic DNA polymerases by phosphonoacetate and phosphonoformate.Archives of Biochemistry and Biophysics 187, 96-101.[CrossRef] [Google Scholar]
  51. Salvant, B. S., Fortunato, E. A. & Spector, D. H. (1998). Cell cycle dysregulation by human cytomegalovirus: influence of the cell cycle phase at the time of infection and effects on cyclin transcription.Journal of Virology 72, 3729-3741. [Google Scholar]
  52. Sarisky, R. T. & Hayward, G. S. (1996). Evidence that the UL84 gene product of human cytomegalovirus is essential for promoting oriLyt-dependent DNA replication and formation of replication compartments in cotransfection assays.Journal of Virology 70, 7398-7413. [Google Scholar]
  53. Sherr, C. J. (1993). Mammalian G1 cyclins.Cell 73, 1059-1065. [Google Scholar]
  54. Sinclair, J. & Sissons, P. (1996). Latent and persistent infections of monocytes and macrophages.Intervirology 39, 293-301. [Google Scholar]
  55. Smith, D. B. & Johnson, K. S. (1988). Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase.Gene 67, 31-40.[CrossRef] [Google Scholar]
  56. Soderberg-Naucler, C., Fish, K. N. & Nelson, J. A. (1997). Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors.Cell 91, 119-126.[CrossRef] [Google Scholar]
  57. Sommer, M. H., Scully, A. L. & Spector, D. H. (1994). Transactivation by the human cytomegalovirus IE2 86-kilodalton protein requires a domain that binds to both the TATA box-binding protein and the retinoblastoma protein.Journal of Virology 68, 6223-6231. [Google Scholar]
  58. Speir, E., Modali, R., Huang, E. S., Leon, M. B., Shawl, F., Finkel, T. & Epstein, S. E. (1994). Potential role of human cytomegalovirus and p53 interaction in coronary restenosis.Science 265, 391-394.[CrossRef] [Google Scholar]
  59. Spinella, M. J., Freemantle, S. J., Sekula, D., Chang, J. H., Christie, A. J. & Dmitrovsky, E. (1999). Retinoic acid promotes ubiquitination and proteolysis of cyclin D1 during induced tumor cell differentiation.Journal of Biological Chemistry 274, 22013-22018.[CrossRef] [Google Scholar]
  60. Stein, R. W., Corrigan, M., Yaciuk, P., Whelan, J. & Moran, E. (1990). Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity.Journal of Virology 64, 4421-4427. [Google Scholar]
  61. Stenberg, R. M., Depto, A. S., Fortney, J. & Nelson, J. A. (1989). Regulated expression of early and late RNAs and proteins from the human cytomegalovirus immediate-early gene region.Journal of Virology 63, 2699-2708. [Google Scholar]
  62. Stenberg, R. M., Fortney, J., Barlow, S. W., Magrane, B. P., Nelson, J. A. & Ghazal, P. (1990). Promoter-specific trans activation and repression by human cytomegalovirus immediate-early proteins involves common and unique protein domains.Journal of Virology 64, 1556-1565. [Google Scholar]
  63. Stinski, M. F., Thomsen, D. R., Stenberg, R. M. & Goldstein, L. C. (1983). Organization and expression of the immediate early genes of human cytomegalovirus.Journal of Virology 46, 1-14. [Google Scholar]
  64. Wade, M., Kowalik, T. F., Mudryj, M., Huang, E. S. & Azizkhan, J. C. (1992). E2F mediates dihydrofolate reductase promoter activation and multiprotein complex formation in human cytomegalovirus infection.Molecular and Cellular Biology 12, 4364-4374. [Google Scholar]
  65. Wathen, M. W., Thomsen, D. R. & Stinski, M. F. (1981). Temporal regulation of human cytomegalovirus transcription at immediate early and early times after infection.Journal of Virology 38, 446-459. [Google Scholar]
  66. Whyte, P., Buchkovich, K. J., Horowitz, J. M., Friend, S. H., Raybuck, M., Weinberg, R. A. & Harlow, E. (1988). Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product.Nature 334, 124-129.[CrossRef] [Google Scholar]
  67. Whyte, P., Williamson, N. M. & Harlow, E. (1989). Cellular targets for transformation by the adenovirus E1A proteins.Cell 56, 67-75.[CrossRef] [Google Scholar]
  68. Wiebusch, L. & Hagemeier, C. (1999). Human cytomegalovirus 86-kilodalton IE2 protein blocks cell cycle progression in G1.Journal of Virology 73, 9274-9283. [Google Scholar]
  69. Winkler, M., Rice, S. A. & Stamminger, T. (1994). UL69 of human cytomegalovirus, an open reading frame with homology to ICP27 of herpes simplex virus, encodes a transactivator of gene expression.Journal of Virology 68, 3943-3954. [Google Scholar]
  70. Zerfass-Thome, K., Zwerschke, W., Mannhardt, B., Tindle, R., Botz, J. W. & Jansen-Dürr, P. (1996). Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein.Oncogene 13, 2323-2330. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-6-1553
Loading
/content/journal/jgv/10.1099/0022-1317-81-6-1553
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error