Characterization of the replication origin (Ori) and adjoining parts of the inverted repeat sequences of the pseudorabies virus genome Free

Abstract

The DNA sequence of a 2·4 kbp fragment located in the internal and terminal inverted repeat sequences of the pseudorabies virus genome determined in this study closes a gap between the previously described genes for the ICP4 and ICP22 homologues. The novel sequence contains no conserved herpesvirus open reading frames. Northern blot and cDNA analyses revealed a viral immediate-early transcript of 1·8 kb, which is spliced by the removal of two small introns close to its 5′ end and which presumably represents the mRNA of the downstream open reading frame encoding the ICP22 homologue. Upstream of the transcribed region, an imperfect set of three directly repeated sequences was identified. Each of them contains a complementary pair of the alphaherpesvirus origin-binding protein recognition motif GTTCGCAC, spaced by AT-rich sequences. studies confirmed that the DNA fragment analysed includes a functional origin of viral DNA replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-6-1539
2000-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/6/0811539a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-6-1539&mimeType=html&fmt=ahah

References

  1. Baumann, R. P., Yalamanchili, V. R. R. & O’Callaghan, D. J. (1989). Functional mapping and DNA sequence of an equine herpesvirus 1 origin of replication.Journal of Virology 63, 1275-1283. [Google Scholar]
  2. Ben-Porat, T. & Kaplan, A. S. (1985). Molecular biology of pseudorabies virus. In The Herpesviruses, pp. 105-173. Edited by B. Roizman. New York: Plenum Press.
  3. Ben-Porat, T. & Veach, R. A. (1980). Origin of replication of the DNA of a herpesvirus (pseudorabies).Proceedings of the National Academy of Sciences, USA 77, 172-175.[CrossRef] [Google Scholar]
  4. Ben-Porat, T., Veach, R. A. & Ihara, S. (1983). Localization of the regions of homology between the genomes of herpes simplex virus, type 1, and pseudorabies virus.Virology 127, 194-204.[CrossRef] [Google Scholar]
  5. Bras, F., Dezélée, S., Simonet, B., Nguyen, X., Vende, P., Flamand, A. & Masse, M. J. (1999). The left border of the genomic inversion of pseudorabies virus contains genes homologous to the UL46 and UL47 genes of herpes simplex virus type 1, but no UL45 gene.Virus Research 60, 29-40.[CrossRef] [Google Scholar]
  6. Breathnach, R. & Chambon, P. (1981). Organization and expression of eucaryotic split genes coding for proteins.Annual Review of Biochemistry 50, 349-383.[CrossRef] [Google Scholar]
  7. Cheung, A. K. (1989). DNA nucleotide sequence analysis of the immediate-early gene of pseudorabies virus.Nucleic Acids Research 17, 4637-4646.[CrossRef] [Google Scholar]
  8. Cheung, A. K. (1991). Cloning of the latency gene and the early protein 0 gene of pseudorabies virus.Journal of Virology 65, 5260-5271. [Google Scholar]
  9. Davison, A. J. & Scott, J. E. (1986). The complete DNA sequence of varicella-zoster virus.Journal of General Virology 67, 1759-1816.[CrossRef] [Google Scholar]
  10. Devereux, J., Haeberli, P. & Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX.Nucleic Acids Research 12, 387-395.[CrossRef] [Google Scholar]
  11. Dolan, A., Jamieson, F. E., Cunningham, C., Barnett, B. C. & McGeoch, D. J. (1998). The genome sequence of herpes simplex virus type 2.Journal of Virology 72, 2010-2021. [Google Scholar]
  12. Elias, P. & Lehman, I. R. (1988). Interaction of origin binding protein with an origin of replication of herpes simplex virus 1.Proceedings of the National Academy of Sciences, USA 85, 2959-2963.[CrossRef] [Google Scholar]
  13. Fuchs, W. & Mettenleiter, T. C. (1996). DNA sequence and transcriptional analysis of the UL1 to UL5 gene cluster of infectious laryngotracheitis virus.Journal of General Virology 77, 2221-2229.[CrossRef] [Google Scholar]
  14. Kaplan, A. S. & Vatter, A. E. (1959). A comparison of herpes simplex and pseudorabies viruses.Virology 7, 394-407.[CrossRef] [Google Scholar]
  15. Klupp, B. G., Kern, H. & Mettenleiter, T. C. (1992). The virulence-determining genomic BamHI fragment 4 of pseudorabies virus contains genes corresponding to the UL15 (partial), UL18, UL19, UL20, and UL21 genes of herpes simplex virus and a putative origin of replication.Virology 191, 900-908.[CrossRef] [Google Scholar]
  16. Koff, A. & Tegtmeyer, P. (1988). Characterization of major recognition sequences for a herpes simplex virus type 1 origin-binding protein.Journal of Virology 62, 4096-4103. [Google Scholar]
  17. Kupershmidt, S., DeMarchi, J. M., Lu, Z. Q. & Ben-Porat, T. (1991). Analysis of an origin of DNA replication located at the L terminus of the genome of pseudorabies virus.Journal of Virology 65, 6283-6291. [Google Scholar]
  18. Lockshon, D. & Galloway, D. A. (1988). Sequence and structural requirements of a herpes simplex viral DNA replication origin.Molecular and Cellular Biology 8, 4018-4027. [Google Scholar]
  19. McGeoch, D. J. & Cook, S. (1994). Molecular phylogeny of the Alphaherpesvirinae subfamily and a proposed evolutionary timescale.Journal of Molecular Biology 238, 9-22.[CrossRef] [Google Scholar]
  20. McGeoch, D. J., Dalrymple, M. A., Davison, A. J., Dolan, A., Frame, M. C., McNab, D., Perry, L. J., Scott, J. E. & Taylor, P. (1988). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1.Journal of General Virology 69, 1531-1574.[CrossRef] [Google Scholar]
  21. Mettenleiter, T. C. (2000). Aujeszky’s disease (pseudorabies) virus: the virus and molecular pathogenesis – state of the art, June 1999.Veterinary Research 31, 99-115. [Google Scholar]
  22. Roizman, B. (1996).Herpesviridae. In Fields Virology, pp. 2221-2230. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia: Lippincott–Raven.
  23. Roizman, B. & Sears, A. E. (1996). Herpes simplex viruses and their replication. In Fields Virology, pp. 2231-2295. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia: Lippincott–Raven.
  24. Schwyzer, M. & Ackermann, M. (1996). Molecular virology of ruminant herpesviruses.Veterinary Microbiology 53, 17-29.[CrossRef] [Google Scholar]
  25. Schwyzer, M., Wirth, U. V., Vogt, B. & Fraefel, C. (1994). BICP22 of bovine herpesvirus 1 is encoded by a spliced 1·7 kb RNA which exhibits immediate early and late transcription kinetics.Journal of General Virology 75, 1703-1711.[CrossRef] [Google Scholar]
  26. Stow, N. D. & Davison, A. J. (1986). Identification of a varicella-zoster virus origin of DNA replication and its activation by herpes simplex virus type 1 gene products.Journal of General Virology 67, 1613-1623.[CrossRef] [Google Scholar]
  27. Stow, N. D. & McMonagle, E. C. (1983). Characterization of the TRS/IRS origin of DNA replication of herpes simplex virus type 1.Virology 130, 427-438.[CrossRef] [Google Scholar]
  28. Telford, E. A. R., Watson, M. S., McBride, K. & Davison, A. J. (1992). The DNA sequence of equine herpesvirus-1.Virology 189, 304-316.[CrossRef] [Google Scholar]
  29. Telford, E. A. R., Watson, M. S., Perry, J., Cullinane, A. A. & Davison, A. J. (1998). The DNA sequence of equine herpesvirus-4.Journal of General Virology 79, 1197-1203. [Google Scholar]
  30. Vlcek, C., Kozmik, Z., Paces, V., Schirm, S. & Schwyzer, M. (1990). Pseudorabies virus immediate-early gene overlaps with an oppositely oriented open reading frame: characterization of their promoter and enhancer regions.Virology 179, 365-377.[CrossRef] [Google Scholar]
  31. Wirth, U. V., Vogt, B. & Schwyzer, M. (1991). The three major immediate-early transcripts of bovine herpesvirus 1 arise from two divergent and spliced transcription units.Journal of Virology 65, 195-205. [Google Scholar]
  32. Wittmann, G. & Rziha, H.-J. (1989). Aujeszky’s disease (pseudorabies) in pigs. In Herpesvirus Diseases of Cattle, Horses, and Pigs, pp. 230-325. Edited by G. Wittmann. Boston: Kluwer.
  33. Zhang, G. & Leader, D. P. (1990). The structure of the pseudorabies virus genome at the end of the inverted repeat sequences proximal to the junction with the short unique region.Journal of General Virology 71, 2433-2441.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-6-1539
Loading
/content/journal/jgv/10.1099/0022-1317-81-6-1539
Loading

Data & Media loading...

Most cited Most Cited RSS feed