1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-6-1413
2000-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/6/0811413a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-6-1413&mimeType=html&fmt=ahah

References

  1. Agrez, M. V., Shafren, D. R., Gu, X., Cox, K., Sheppard, D. & Barry, R. D. (1997). Integrin αvβ6 enhances coxsackievirus B1 lytic infection of human colon cancer cells. Virology 239, 71-77.[CrossRef] [Google Scholar]
  2. Aiken, C., Konner, J., Landau, N. R., Lenburg, M. E. & Trono, D. (1994). Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell 76, 853-864.[CrossRef] [Google Scholar]
  3. Allan, J. S., Strauss, J. & Buck, D. W. (1990). Enhancement of SIV infection with soluble receptor molecules. Science 247, 1084-1088.[CrossRef] [Google Scholar]
  4. Allen, I. V., McQuaid, S., McMahon, J., Kirk, J. & McConnel, R. (1996). The significance of measles virus antigen and genome distribution in the CNS in SSPE for mechanisms of viral spread and demyelination. Journal of Neuropathology & Experimental Neurology 55, 471-480.[CrossRef] [Google Scholar]
  5. Arita, M., Koike, S., Aoki, J., Horie, H. & Nomoto, A. (1998). Interaction of poliovirus with its purified receptor and conformational alteration in the virion. Journal of Virology 72, 3578-3586. [Google Scholar]
  6. Asher, L. V., Binn, L. N., Mensing, T. L., Marchwicki, R. H., Vassell, R. A. & Young, G. D. (1995). Pathogenesis of hepatitis A in orally inoculated owl monkeys (Aotus trivirgatus).Journal of Medical Virology 47, 260-268.[CrossRef] [Google Scholar]
  7. Ashmun, R. A., Shapiro, L. H. & Look, A. T. (1992). Deletion of the zinc-binding motif of CD13/aminopeptidase N molecules results in loss of epitopes that mediate binding of inhibitory antibodies.Blood 79, 3344-3349. [Google Scholar]
  8. Baker, K. A., Dutch, R. E., Lamb, R. A. & Jardetzky, T. S. (1999). Structural basis for paramyxovirus-mediated membrane fusion.Molecular Cell 3, 309-319.[CrossRef] [Google Scholar]
  9. Balam, P., Davis-Poynter, N., Bell, S., Atkinson, H., Browne, H. & Minson, T. (1984). An analysis of in vitro and in vivo phenotypes of mutants of herpes simplex virus type 1 lacking glycoproteins gG, gE, gI or the putative gJ.Journal of General Virology 75, 1245-1258. [Google Scholar]
  10. Bartz, R., Brinckmann, U., Dunster, L., Rima, B., ter Meulen, V. & Schneider-Schaulies, J. (1996). Mapping amino acids of the measles virus hemagglutinin responsible for receptor (CD46) downregulation.Virology 224, 334-337.[CrossRef] [Google Scholar]
  11. Bartz, R., Firsching, R., Rima, B., ter Meulen, V. & Schneider-Schaulies, J. (1998). Differential receptor usage by measles virus strains.Journal of General Virology 79, 1015-1025. [Google Scholar]
  12. Becker, S., Spiess, M. & Klenk, H.-D. (1995). The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus.Journal of General Virology 76, 393-399.[CrossRef] [Google Scholar]
  13. Beisel, C., Tanner, J., Matsuo, T., Thorley-Lawson, D., Kezdy, F. & Kieff, E. (1985). Two major outer envelope glycoproteins of Epstein–Barr virus are encoded by the same gene.Journal of Virology 54, 665-674. [Google Scholar]
  14. Bergelson, J. M., Chen, M., Solomon, K. R., John, N. F., Lin, H. & Finberg, R. W. (1994). Decay accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses.Proceedings of the National Academy of Sciences, USA 91, 6245-6248.[CrossRef] [Google Scholar]
  15. Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., Horwitz, M. S., Crowell, R. L. & Finberg, R. W. (1997). Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5.Science 275, 1320-1323.[CrossRef] [Google Scholar]
  16. Berger, E. A., Murphy, P. M. & Farber, J. M. (1999). Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease.Annual Review of Immunology 17, 657-700.[CrossRef] [Google Scholar]
  17. Bernhardt, G., Bibb, J. A., Bradley, J. & Wimmer, E. (1994). Molecular characterization of the cellular receptor for poliovirus.Virology 199, 105-110.[CrossRef] [Google Scholar]
  18. Bewley, M. C., Springer, K., Zhang, Y.-B., Freimuth, P. & Flanagan, J. M. (1999). Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR.Science 286, 1579-1583.[CrossRef] [Google Scholar]
  19. Bhat, S., Spitalnid, S. L., Gonzalez-Scarano, F. & Silberberg, D. H. (1991). Galactosyl ceramide or a derivative is an essential component of the neural receptor for human immunodeficiency virus type 1 envelope glycoprotein gp120.Proceedings of the National Academy of Sciences, USA 88, 7131-7134.[CrossRef] [Google Scholar]
  20. Bhat, S., Mettus, R. V., Reddy, E. P., Ugen, K. E., Srikanthan, V., Williams, W. V. & Weiner, D. B. (1993). The galactosyl ceramide/sulfatide receptor binding region of HIV-1 gp120 maps to amino acids 206–275.AIDS Research and Human Retroviruses 9, 175-181.[CrossRef] [Google Scholar]
  21. Bishop, N. E. (1999). Conformational changes in the hepatitis A virus capsid in response to acidic conditions.Journal of Medical Microbiology 48, 443-450.[CrossRef] [Google Scholar]
  22. Bitzer, M., Lauer, U., Baumann, C., Spiegel, M., Gregor, M. & Neubert, W. J. (1997). Sendai virus efficiently infects cells via the asialoglycoprotein receptor and requires the presence of cleaved F0 precursor proteins for this alternative route of cell entry.Journal of Virology 71, 5481-5486. [Google Scholar]
  23. Blixenkrone-Moller, M., Bernard, A., Bencsik, A., Sixt, N., Diamond, L. E., Logan, J. S. & Wild, T. F. (1998). Role of CD46 in measles virus infection in CD46 transgenic mice.Virology 249, 238-248.[CrossRef] [Google Scholar]
  24. Borrow, P. & Oldstone, M. B. A. (1992). Characterization of lymphocytic choriomeningitis virus-binding protein(s): a candidate cellular receptor for the virus.Journal of Virology 66, 7270-7281. [Google Scholar]
  25. Borrow, P. & Oldstone, M. B. A. (1994). Mechanism of lymphocytic choriomeningitis virus entry into cells. Virology 198, 1-9.[CrossRef] [Google Scholar]
  26. Borrow, P., Evans, C. F. & Oldstone, M. B. A. (1995). Virus-induced immunosuppression: immune system-mediated destruction of virus-infected dendritic cells results in generalized immune suppression. Journal of Virology 69, 1059-1070. [Google Scholar]
  27. Breiner, K. M., Urban, S. & Schaller, H. (1998). Carboxypeptidase D (gp180), a Golgi-resident protein, functions in the attachment and entry of avian hepatitis B viruses.Journal of Virology 72, 8098-8104. [Google Scholar]
  28. Brunetti, C. R., Burke, R. L., Hoflack, B., Ludwig, T., Dingwell, K. S. & Johnson, D. C. (1995). Role of mannose-6-phosphate receptors in herpes simplex virus entry into cells and cell-to-cell transmission.Journal of Virology 69, 3517-3528. [Google Scholar]
  29. Buchholz, C. J., Koller, D., Devaux, P., Mumenthaler, C., Schneider-Schaulies, J., Braun, W., Gerlier, D. & Cattaneo, R. (1997). Mapping of the primary binding site of measles virus to its receptor CD46.Journal of Biological Chemistry 272, 22072-22079.[CrossRef] [Google Scholar]
  30. Budkowska, A., Quan, C., Groh, F., Bedossa, P., Dubreuil, P., Bouvet, J. P. & Pillot, J. (1993). Hepatitis B virus (HBV) binding factor in human serum: candidate for a soluble form of hepatocyte HBV receptor.Journal of Virology 67, 4316-4322. [Google Scholar]
  31. Budkowska, A., Maillard, P., Theret, N., Groh, F., Possehl, C., Topilko, A. & Crainic, R. (1997). Activation of the envelope proteins by a metalloproteinase enables attachment and entry of the hepatitis B virus into T-lymphocyte.Virology 237, 10-22.[CrossRef] [Google Scholar]
  32. Byrnes, K. J. & Griffin, D. E. (1998). Binding of Sindbis virus to cell surface heparan sulfate.Journal of Virology 72, 7349-7356. [Google Scholar]
  33. Cao, W., Henry, M. D., Borrow, P., Yamada, H., Elder, J. H., Ravkov, E. V., Nichol, S. T., Compans, R., Campbell, K. P. & Oldstone, M. B. A. (1998). Identification of α-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus.Science 282, 2079-2081.[CrossRef] [Google Scholar]
  34. Carr, C. M., Chaudhry, C. & Kim, P. S. (1997). Influenza hemagglutinin is spring-loaded by a metastable native conformation.Proceedings of the National Academy of Sciences, USA 94, 14306-14313.[CrossRef] [Google Scholar]
  35. Casasnovas, J. M., Larvie, M. & Stehle, T. (1999). Crystal structure of two CD46 domains reveals an extended measles virus-binding surface.EMBO Journal 18, 2911-2922.[CrossRef] [Google Scholar]
  36. Cathomen, T., Mrkic, B., Spehner, D., Drillien, R., Naef, R., Pavlovic, J., Aguzzi, A., Billeter, M. A. & Cattaneo, R. (1998a). A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain.EMBO Journal 17, 3899-3908.[CrossRef] [Google Scholar]
  37. Cathomen, T., Naim, H. Y. & Cattaneo, R. (1998b). Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. Journal of Virology 72, 1224-1234. [Google Scholar]
  38. Chapman, M. S. & Rossman, M. G. (1993). Comparison of the surface properties of picornaviruses: strategies for hiding the receptor site from immune surveillance.Virology 195, 745-752.[CrossRef] [Google Scholar]
  39. Chen, D. S., Asanaka, M., Yokomori, K., Wang, F., Hwang, S. B., Li, H. P. & Lai, M. M. (1995). A pregnancy-specific glycoprotein is expressed in the brain and serves as a receptor for mouse hepatitis virus.Proceedings of the National Academy of Sciences, USA 92, 12095-12099.[CrossRef] [Google Scholar]
  40. Chen, Y., Maguire, T., Hileman, R. E., Fromm, J. R., Esko, J. D., Linhardt, R. J. & Marks, R. M. (1997). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate.Nature Medicine 3, 866-871.[CrossRef] [Google Scholar]
  41. Chiu, C. Y., Mathias, P., Nemerow, G. R. & Stewart, P. L. (1999). Structure of adenovirus complexed with its internalization receptor, αvβ5 integrin.Journal of Virology 73, 6759-6768. [Google Scholar]
  42. Chung, C. S., Hsiao, J. C., Chang, Y. S. & Chang, W. (1998). A27L protein mediates vaccinia virus interaction with cell surface heparan sulfate.Journal of Virology 72, 1577-1585. [Google Scholar]
  43. Colston, W. & Racaniello, V. R. (1994). Soluble receptor-resistant poliovirus mutants identify surface and internal capsid residues that control interaction with the cell receptor.EMBO Journal 13, 5855-5862. [Google Scholar]
  44. Compans, R. W. (1995). Virus entry and release in polarized epithelial cells.Current Topics in Microbiology and Immunology 202, 209-219. [Google Scholar]
  45. Compton, S. R., Stephensen, C. B., Snyder, S. W., Weismiller, D. G. & Holmes, K. V. (1992). Coronavirus species specificity: murine coronavirus binds to a mouse-specific epitope on its carcinoembryonic antigen-related receptor glycoprotein.Journal of Virology 66, 7420-7428. [Google Scholar]
  46. Compton, T., Nowlin, D. M. & Cooper, N. R. (1993). Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate.Virology 193, 834-841.[CrossRef] [Google Scholar]
  47. Corey, L. & Spear, P. G. (1986a). Infections with herpes simplex viruses (1).New England Journal of Medicine 314, 686-691.[CrossRef] [Google Scholar]
  48. Corey, L. & Spear, P. G. (1986b). Infections with herpes simplex viruses (2).New England Journal of Medicine 314, 749-757.[CrossRef] [Google Scholar]
  49. Coutelier, J.-P., Godfraind, C., Dveksler, G. S., Wysocka, M., Cardellichio, H., Noel, H. & Holmes, K. V. (1994). B lymphocyte and macrophage expression of carcinoembryonic antigen-related adhesion molecules that serve as receptors for murine coronavirus.European Journal of Immunology 24, 1383-1390.[CrossRef] [Google Scholar]
  50. Daenke, S., McCracken, S. A. & Booth, S. (1999). Human T-cell leukaemia/lymphoma virus type 1 syncytium formation is regulated in a cell-specific manner by ICAM-1, ICAM-3 and VCAM-1 and can be inhibited by antibodies to integrin β2 or β7.Journal of General Virology 80, 1429-1436. [Google Scholar]
  51. Deatly, A. M., Coleman, J. W., McMullen, G., McAuliffe, M., Jayarama, V., Cupo, A., Crowley, J. C., McWilliams, T. & Taffs, R. E. (1999). Poliomyelitis in intraspinally inoculated poliovirus receptor transgenic mice.Virology 255, 221-227.[CrossRef] [Google Scholar]
  52. Delmas, B., Gelfi, J., L’Haridon, R., Vogel, L. K., Sjostrom, H., Noren, O. & Laude, H. (1992). Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV.Nature 357, 417-420.[CrossRef] [Google Scholar]
  53. Delmas, B., Gelfi, J., Kut, E., Syostrom, H., Noren, O. & Laude, H. (1994). Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site.Journal of Virology 68, 5216-5224. [Google Scholar]
  54. Denner, J. (1998). Immunosuppression by retroviruses: implications for xenotransplantation.Xenotransplantation 862, 75-86. [Google Scholar]
  55. De Parseval, A., Lerner, D. L., Borrow, P., Willett, B. J. & Elder, J. H. (1997). Blocking of feline immunodeficiency virus infection by a monoclonal antibody to CD9 is via inhibition of virus release rather than interference with receptor binding.Journal of Virology 71, 5742-5749. [Google Scholar]
  56. Dingwell, K. S., Brunetti, C. R., Hendricks, R. L., Tang, Q., Tang, M., Rainbow, A. J. & Johnson, D. C. (1994). Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells.Journal of Virology 68, 834-845. [Google Scholar]
  57. Dörig, R. E., Marcil, A. & Richardson, C. D. (1994). CD46, a primate-specific receptor for measles virus.Trends in Microbiology 2, 312-318.[CrossRef] [Google Scholar]
  58. Dove, A. W. & Racaniello, V. R. (1997). Cold-adapted poliovirus mutants bypass a post entry replication block.Journal of Virology 71, 4728-4735. [Google Scholar]
  59. Duprex, W. P., Duffy, I., McQuaid, S., Hamill, L., Cosby, S. L., Billeter, M. A., Schneider-Schaulies, J., ter Meulen, V. & Rima, B. K. (1999a). The H gene of rodent brain-adapted measles virus confers neurovirulence to the Edmonston vaccine strain.Journal of Virology 73, 6916-6922. [Google Scholar]
  60. Duprex, W. P., McQuaid, S., Hangartner, L., Billeter, M. A. & Rima, B. K. (1999b). Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus.Journal of Virology 73, 9568-9575. [Google Scholar]
  61. Dveksler, G. S., Pensiero, M. N., Cardellichio, C. B., Williams, R. K., Jiang, G. S., Holmes, K. V. & Dieffenbach, C. W. (1991). Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV.Journal of Virology 65, 6881-6891. [Google Scholar]
  62. Dveksler, G. S., Dieffenbach, C. W., Cardellichio, C. B., McCuaig, K., Pensiero, M. N., Jiang, G. S., Beauchemin, N. & Holmes, K. V. (1993a). Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus A59. Journal of Virology 67, 1-8. [Google Scholar]
  63. Dveksler, G. S., Pensiero, M. N., Dieffenbach, C. W., Cardellichio, C. B., Basile, A. A., Elia, P. E. & Holmes, K. V. (1993b). Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor.Proceedings of the National Academy of Sciences, USA 90, 1716-1720.[CrossRef] [Google Scholar]
  64. Eckert, D. M., Malashkevich, V. N., Hong, L. H., Carr, P. A. & Kim, P. S. (1999). Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket.Cell 99, 103-115.[CrossRef] [Google Scholar]
  65. Fauci, A. S. (1993). Multifactorial nature of human immunodeficiency virus disease: implications for therapy. Science 262, 1011-1018.[CrossRef] [Google Scholar]
  66. Fauci, A. S. (1996). Host factors and the pathogenesis of HIV-induced disease.Nature 384, 529-534.[CrossRef] [Google Scholar]
  67. Feigelstock, D., Thompson, P., Mattoo, P., Zhang, Y. & Kaplan, G. G. (1998). The human homolog of HAVcr-1 codes for a hepatitis A virus cellular receptor.Journal of Virology 72, 6621-6628. [Google Scholar]
  68. Firsching, R., Buchholz, C. J., Schneider, U., Cattaneo, R., ter Meulen, V. & Schneider-Schaulies, J. (1999). Measles virus spread by cell-cell contacts: uncoupling of contact-mediated receptor (CD46) downregulation from virus uptake.Journal of Virology 73, 5265-5273. [Google Scholar]
  69. Flint, M., Maidens, C., Loomis-Price, L. D., Shotton, C., Dubuisson, J., Monk, P., Higginbottom, A., Levy, S. & McKeating, J. A. (1999). Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81.Journal of Virology 73, 6235-6244. [Google Scholar]
  70. Freistadt, M. S. (1994). Distribution of the poliovirus receptor in human tissue. In Cellular Receptors for Animal Viruses, pp. 445-462. Edited by E. Wimmer. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press.
  71. Freistadt, M. S., Fleit, H. B. & Wimmer, E. (1993). Poliovirus receptor on human blood cells: a possible extraneural site of poliovirus replication.Virology 195, 798-803.[CrossRef] [Google Scholar]
  72. Garson, J. A., Lubach, D., Passas, J., Whitby, K. & Grant, P. R. (1999). Suramin blocks hepatitis C binding to human cells in vitro.Journal of Medical Virology 57, 238-242.[CrossRef] [Google Scholar]
  73. Geraghty, R. J., Krumenacher, C., Cohen, G. H., Eisenberg, R. J. & Spear, P. G. (1998). Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor.Science 280, 1618-1620.[CrossRef] [Google Scholar]
  74. Gerlier, D., Varior-Krishnan, G. & Devaux, P. (1995). CD46-mediated measles virus entry: a first key to host-range specificity.Trends in Microbiology 3, 338-345.[CrossRef] [Google Scholar]
  75. Ghali, M. & Schneider-Schaulies, J. (1998). Receptor (CD46)- and replication-mediated interleukin-6 induction by measles virus in human astrocytoma cells.Journal of Neurovirology 4, 521-530.[CrossRef] [Google Scholar]
  76. Godfraind, C. & Coutelier, J. P. (1998). Morphological analysis of mouse hepatitis virus A59-induced pathology with regard to viral receptor expression.Histology and Histopathology 13, 181-199. [Google Scholar]
  77. Godfraind, C., Langreth, S. G., Cardellichio, C. B., Knobler, R., Coutelier, J. P., Dubois-Dalcq, M. & Holmes, K. V. (1995). Tissue and cellular distribution of an adhesion molecule in the carcinoembryonic antigen family that serves as a receptor for mouse hepatitis virus.Laboratory Investigation 73, 615-627. [Google Scholar]
  78. Griffin, D. E. (1995). Immune responses during measles virus infection.Current Topics of Microbiology and Immunology 191, 117-134. [Google Scholar]
  79. Griffin, D. E. & Bellini, W. J. (1996). Measles virus. In Fields Virology, pp. 1267-1312. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia: Lippincott–Raven.
  80. Gromeier, M., Bossert, B., Arita, M., Nomoto, A. & Wimmer, E. (1999). Dual stem loops within the poliovirus internal entry site control neurovirulence.Journal of Virology 73, 958-964. [Google Scholar]
  81. Haraguchi, S., Good, R. A. & Day, N. K. (1995). Immunosuppressive retroviral peptides: cAMP and cytokin patterns.Immunology Today 16, 595-603.[CrossRef] [Google Scholar]
  82. Harouse, J. M., Laughlin, M. A., Pletcher, C., Friedman, H. M. & Gonzalez-Scarano, F. (1991). Entry of human immunodeficiency virus-1 into glial cells proceeds via an alternative, efficient pathway.Journal of Leukocyte Biology 49, 605-609. [Google Scholar]
  83. Haywood, A. M. (1994). Virus receptors: binding, adhesion strengthening, and changes in viral structure. Journal of Virology 68, 1-5. [Google Scholar]
  84. Hegyi, A. & Kolb, A. F. (1998). Characterization of determinants involved in the feline infectious peritonitis virus receptor function of feline aminopeptidase N.Journal of General Virology 79, 1387-1391. [Google Scholar]
  85. Hensley, L. E., Holmes, K. V., Beauchemin, N. & Baric, R. S. (1998). Virus–receptor interactions and interspecies transfer of a mouse hepatitis virus. Advances in Experimental Medicine and Biology 440, 33-41. [Google Scholar]
  86. Herbein, G., Mahlknecht, U., Batliwalla, F., Gregersen, P., Pappas, T., Butler, J., O’Brien, W. A. & Verdin, E. (1998). Apoptosis of CD8+ T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4.Nature 395, 189-194.[CrossRef] [Google Scholar]
  87. Hirano, A., Yang, Z., Katayama, Y., Korte-Sarfaty, J. & Wong, T. C. (1999). Human CD46 enhances nitric oxide production in mouse macrophages in response to measles virus infection in the presence of gamma interferon: dependence on the CD46 cytoplasmic domains.Journal of Virology 73, 4776-4785. [Google Scholar]
  88. Hladik, F., Lentz, G., Akridge, R. E., Peterson, G., Kelley, H., McElroy, A. & McElrath, M. J. (1999). Dendritic cell–T cell interactions support coreceptor-independent human immunodeficiency virus type 1 transmission in the human genital tract.Journal of Virology 73, 5833-5842. [Google Scholar]
  89. Horvat, B., Rivailler, P., Varior-Krishnan, G., Cardoso, A., Gerlier, D. & Rabourdin-Combe, C. (1996). Transgenic mice expressing human measles virus (MV) receptor CD46 provide cells exhibiting different permissivities to MV infections.Journal of Virology 70, 6673-6681. [Google Scholar]
  90. Hsu, H. C., Chen, C. C., Huang, G. T. & Lee, P. H. (1996). Clonal Epstein–Barr virus associated cholangiocarcinoma with lymphoepithelioma-like component.Human Pathology 27, 848-850.[CrossRef] [Google Scholar]
  91. Hsu, E. C., Dörig, R., Sarangi, F., Marcil, A., Iorio, C. & Richardson, C. D. (1997). Artificial mutations and natural variations in the CD46 molecules from human and monkey cells define regions important for measles virus binding.Journal of Virology 71, 6144-6154. [Google Scholar]
  92. Hsu, E. C., Sarangi, F., Iorio, C., Sidhu, M. S., Udem, S. A., Dillehay, D. L., Xu, W., Rota, P., Bellini, W. J. & Richardson, C. D. (1998). A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells.Journal of Virology 72, 2905-2916. [Google Scholar]
  93. Hsu, E. C., Sabatinos, S., Hoedemaeker, F. J., Rose, D. R. & Richardson, C. D. (1999). Use of site-specific mutagenesis and monoclonal antibodies to map regions of CD46 that interact with measles virus H protein.Virology 258, 314-326.[CrossRef] [Google Scholar]
  94. Huang, S., Kamata, T., Takada, Y., Ruggeri, Z. M. & Nemerow, G. R. (1996a). Adenovirus interaction with distinct integrins mediate separate events in cell entry and gene delivery to hematopoietic cells.Journal of Virology 70, 4502-4508. [Google Scholar]
  95. Huang, Y. X., Paxton, W. A., Wolinsky, S. M., Neumann, A. U., Zhang, L. Q., Yazdanbakhsh, K., Kunstman, K., Erickson, D., Dragon, E., Landau, N. R., Phair, J., Ho, D. D. & Koup, R. A. (1996b). The role of a mutant CCR5 allele in HIV-1 transmission and disease progression.Nature Medicine 2, 1240-1243.[CrossRef] [Google Scholar]
  96. Hung, S.-H., Lee, P.-L., Chen, H.-W., Chen, L.-K., Kao, C.-L. & King, C.-C. (1999). Analysis of the steps involved in dengue virus entry into host cells.Virology 257, 156-167.[CrossRef] [Google Scholar]
  97. Imai, S., Nishikawa, J. & Takada, K. (1998). Cell-to-cell contact as an efficient mode of Epstein–Barr virus infection of diverse human epithelial cells.Journal of Virology 72, 4371-4378. [Google Scholar]
  98. Immergluck, L. C., Domowicz, M. S., Schwartz, N. B. & Herold, B. C. (1998). Viral and cellular requirements for entry of herpes simplex virus type 1 into primary neuronal cells.Journal of General Virology 79, 549-559. [Google Scholar]
  99. Ito, Y., Tsurudome, M., Yamada, A. & Hishiyama, M. (1987). Induction of cell fusion in Newcastle disease virus-infected L929 cells by anti-L929 cell antisera.Journal of General Virology 68, 1261-1266.[CrossRef] [Google Scholar]
  100. Ito, Y., Komada, H., Kusagawa, S., Tsurudome, M., Matsumara, H., Kawano, M., Ohta, H. & Nishio, M. (1992). Fusion regulation proteins on the cell surface: isolation and characterization of monoclonal antibodies which enhance giant polykarocyte formation in Newcastle disease virus-infected cell lines of human origin.Journal of Virology 66, 5999-6007. [Google Scholar]
  101. Jabbar, M. A. & Nayak, D. P. (1990). Intracellular interaction of human immunodeficiency virus type 1 (ARV-2) envelope glycoprotein gp160 with CD4 blocks the movement and maturation of CD4 to the plasma membrane.Journal of Virology 64, 6297-6304. [Google Scholar]
  102. Jackson, T., Ellard, F. M., Ghazaleh, R. A., Brookes, S. M., Blakemore, W. E., Cortyn, A. H., Stuart, D. I., Newman, J. W. & King, A. M. (1996). Efficient infection of cells in culture by type O foot and mouth disease virus requires binding to cell surface heparan sulfate.Journal of Virology 70, 5282-5287. [Google Scholar]
  103. Johnston, I. C. D., ter Meulen, V., Schneider-Schaulies, J. & Schneider-Schaulies, S. (1999). A recombinant measles vaccine virus expressing wild-type glycoproteins: consequences for viral spread and cell tropism.Journal of Virology 73, 6903-6915. [Google Scholar]
  104. Johnstone, R. W., Loveland, B. E. & McKenzie, I. F. C. (1993). Identification and quantification of complement regulator CD46 on normal human tissues.Immunology 79, 341-347. [Google Scholar]
  105. Kaplan, G., Peters, D. & Racaniello, V. R. (1990). Poliovirus mutants resistant to neutralization with soluble cell receptors.Science 250, 1596-1599.[CrossRef] [Google Scholar]
  106. Kaplan, G., Totsuka, A., Thompson, P., Akatsuka, T., Moritsugu, Y. & Feinstone, S. M. (1996). Identification of a surface protein on African green monkey kidney cells as a receptor for hepatitis A virus.EMBO Journal 15, 4282-4296. [Google Scholar]
  107. Karger, A., Schmidt, J. & Mettenleiter, T. C. (1998). Infectivity of a pseudorabies virus mutant lacking attachment glycoproteins C and D. Journal of Virology 72, 7341-7348. [Google Scholar]
  108. Karp, C. L., Wysocka, M., Wahl, L. M., Ahearn, J. M., Cuomo, P. J., Sherry, B., Trinchieri, G. & Griffin, D. E. (1996). Mechanism of suppression of cell-mediated immunity by measles virus.Science 273, 228-231.[CrossRef] [Google Scholar]
  109. Kasai, K., Sato, Y., Kameya, T., Inoue, H., Yoshimura, H., Kon, S. & Kikuchi, K. (1994). Incidence of latent infection of Epstein–Barr virus in lung cancers – an analysis of EBER1 expression in lung cancers by in situ hybridization.Journal of Pathology 174, 257-265.[CrossRef] [Google Scholar]
  110. Kim, Y. S., Paik, S. R., Kim, H. K., Yeom, B. W., Kim, I. & Lee, D. (1998). Epstein–Barr virus and CD21 expression in gastrointestinal tumors.Pathology Research and Practice 194, 705-711.[CrossRef] [Google Scholar]
  111. Klatzmann, D., Champagne, E., Chamaret, S., Gruest, J., Guetard, D., Hercend, T., Gluckman, J.-C. & Montagnier, L. (1984). T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV.Nature 312, 767-768.[CrossRef] [Google Scholar]
  112. Klenk, H.-D., Volchkov, V. E. & Feldmann, H. (1998). Two strings to the bow of Ebola virus.Nature Medicine 4, 388-389.[CrossRef] [Google Scholar]
  113. Klupp, B. G. & Mettenleiter, T. C. (1999). Glycoprotein gL-independent infectivity of pseudorabies virus is mediated by a gD–gH fusion protein.Journal of Virology 73, 3014-3022. [Google Scholar]
  114. Knight, S. C. & Patterson, S. (1997). Bone marrow-derived dendritic cells, infection with human immunodeficiency virus, and immunopathology.Annual Review of Immunology 15, 593-615.[CrossRef] [Google Scholar]
  115. Köck, J., Theilemann, L., Galle, P. & Schlicht, H.-J. (1996). Hepatitis B virus nucleic acid associated with human peripheral blood mononuclear cells do not originate from replicating virus.Hepatology 23, 405-413.[CrossRef] [Google Scholar]
  116. Koike, S., Horie, H., Ise, I., Okitsu, A., Yoshida, M., Iizuka, N., Takeuchi, K., Tagegami, T. & Nomoto, A. (1990). The poliovirus receptor protein is produced both as membrane-bound and secreted forms.EMBO Journal 9, 3217-3222. [Google Scholar]
  117. Koike, S., Taya, C., Kurata, T., Abe, S., Ise, I., Yonekawa, H. & Nomoto, A. (1991). Transgenic mice susceptible to poliovirus.Proceedings of the National Academy of Sciences, USA 88, 951-955.[CrossRef] [Google Scholar]
  118. Kolb, A. F., Maile, J., Heister, A. & Siddell, S. G. (1996). Characterization of functional domains in the human coronavirus HCV 229E receptor.Journal of General Virology 77, 2515-2521.[CrossRef] [Google Scholar]
  119. Krantic, S., Gimenez, C. & Rabourdin-Combe, C. (1995). Cell-to-cell contact via measles virus haemagglutinin–CD46 interaction triggers CD46 downregulation.Journal of General Virology 76, 2793-2800.[CrossRef] [Google Scholar]
  120. Kuhn, R. J. (1997). Identification and biology of cellular receptors for the coxsackie B viruses group. Current Topics in Microbiology and Immunology 223, 209-226. [Google Scholar]
  121. Kuo, L., Godeke, G.-J., Raamsman, M. J. B., Masters, P. S. & Rottier, P. J. M. (2000). Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier.Journal of Virology 74, 1393-1406.[CrossRef] [Google Scholar]
  122. Kuroki, K., Eng, F., Ishikawa, T., Turck, C., Harada, F. & Ganem, D. (1995). Gp180, a host cell glycoprotein that binds duck hepatitis B virus particles, is encoded by a member of the carboxypeptidase gene family.Journal of Biological Chemistry 270, 15022-15028.[CrossRef] [Google Scholar]
  123. Lachance, C., Arbour, N., Cashman, N. R. & Talbot, P. J. (1998). Involvement of aminopeptidase N (CD13) in infection of human neural cells by human coronavirus 229E.Journal of Virology 72, 6511-6519. [Google Scholar]
  124. Lafferty, W. E., Coombs, R. W., Benedetti, J., Critchlow, C. & Corey, L. (1987). Recurrences after oral and genital herpes simplex virus infection. Influences of site of infection and viral type.New England Journal of Medicine 316, 1444-1449.[CrossRef] [Google Scholar]
  125. Langedijk, J. P. M., Daus, F. J. & van Oirschot, J. T. (1997). Sequence and structure alignment of paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. Journal of Virology 71, 6155-6167. [Google Scholar]
  126. Lawrence, D. M. P., Patterson, C. E., Gales, T. L., D’Orazio, J. L., Vaughn, M. M. & Rall, G. F. (2000). Measles virus spread between neurons requires cell contact but not CD46 expression, syncytium formation, or extracellular virus production.Journal of Virology 74, 1908-1918.[CrossRef] [Google Scholar]
  127. Lecouturier, V., Fayolle, J., Caballero, M., Carabana, J., Celma, M. L., Fernandez-Munoz, R., Wild, T. F. & Buckland, R. (1996). Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains.Journal of Virology 70, 4200-4204. [Google Scholar]
  128. Leon-Monzon, M. E., Illa, I. & Dalakas, M. C. (1995). Expression of poliovirus receptor in human spinal cord and muscle.Annals of the New York Academy of Sciences 753, 48-57. [Google Scholar]
  129. Levy, S., Todd, S. C. & Maecker, H. T. (1998). CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system.Annual Review of Immunology 16, 89-109.[CrossRef] [Google Scholar]
  130. Liao, S. & Racaniello, V. R. (1997). Allele-specific adaptation of poliovirus VP1 B-C loop variants to mutant cell receptors.Journal of Virology 71, 9770-9777. [Google Scholar]
  131. Liebert, U. G., Flanagan, S. G., Löffler, S., Baczko, K., ter Meulen, V. & Rima, B. (1994). Antigenic determinants of measles virus hemagglutinin associated with neurovirulence.Journal of Virology 68, 1486-1493. [Google Scholar]
  132. Libert, F., Cochaux, P., Beckman, G., Samson, M., Aksenova, M., Cao, A., Czeizel, A., Claustres, M., de la Rua, C., Ferrari, M., Ferrec, C., Glover, G., Grinde, B., Guran, S., Kucinskas, V., Lavinha, J., Mercier, B., Ogur, G., Peltonen, L., Rosatelli, C., Schwartz, M., Spitsyn, V., Timar, L., Beckman, L., Parmentier, M. & Vassart, G. (1998). The delta CCR5 mutation conferring protection against HIV-1 in Caucasian populations has a single and recent origin in Northeastern Europe.Human Molecular Genetics 7, 399-406.[CrossRef] [Google Scholar]
  133. Liszewski, M. K., Post, T. W. & Atkinson, J. P. (1991). Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster.Annual Review of Immunology 9, 431-455.[CrossRef] [Google Scholar]
  134. Liu, R., Paxton, W. A., Choe, S., Ceradini, D., Martin, S. R., Horuk, R., Macdonald, M. E., Stuhlmann, H., Koup, R. A. & Landau, N. R. (1996). Homozygous defect in HIV coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection.Cell 86, 367-377.[CrossRef] [Google Scholar]
  135. Löffler, S., Lottspeich, F., Lanza, F., Azorsa, D. O., ter Meulen, V. & Schneider-Schaulies, J. (1997). CD9, a tetraspan transmembrane protein, renders cells susceptible to canine distemper virus.Journal of Virology 71, 42-49. [Google Scholar]
  136. Look, A. T., Ashmun, R. A., Shapiro, L. H. & Peiper, S. C. (1989). Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase N.Journal of Clinical Investigation 83, 1299-1307.[CrossRef] [Google Scholar]
  137. Lowell, C. A., Klickstein, L. B., Carter, R. H., Mitchell, J. A., Fearon, D. T. & Ahearn, J. M. (1989). Mapping the Epstein–Barr virus and C3dg binding sites to a common domain on complement receptor type 2.Journal of Experimental Medicine 170, 1931-1946.[CrossRef] [Google Scholar]
  138. Macadam, A. J., Pollard, S. R., Ferguson, G., Dunn, G., Skuce, R., Almond, J. W. & Minor, P. D. (1993). Genetic bases of attenuation of the Sabin type 2 vaccine strain of poliovirus in primates.Virology 192, 18-26.[CrossRef] [Google Scholar]
  139. McQuaid, S., Campbell, S., Wallace, I. J. C., Kirk, J. & Cosby, S. L. (1998). Measles virus infection and replication in undifferentiated and differentiated human neuronal cells in culture.Journal of Virology 72, 5245-5250. [Google Scholar]
  140. Manchester, M., Gairin, J. E., Patterson, J. B., Alvarez, J., Liszewski, M. K., Eto, D. S., Atkinson, J. P. & Oldstone, M. B. A. (1997). Measles virus recognizes its receptor, CD46, via two distinct binding domains within SCR 1–2.Virology 233, 174-184.[CrossRef] [Google Scholar]
  141. Mebatsion, T., Finke, S., Weiland, F. & Conzelmann, K.-K. (1997). A CXCR4/CD4 pseudotype rhabdovirus that selectively infects HIV-1 envelope protein-expressing cells.Cell 90, 841-847.[CrossRef] [Google Scholar]
  142. Meissner, N. & Koschel, K. (1995). Downregulation of endothelin receptor mRNA synthesis in C6 rat astrocytoma cells by persistent measles virus and canine distemper virus infections.Journal of Virology 69, 5191-5194. [Google Scholar]
  143. Mendelsohn, C. L., Wimmer, E. & Racaniello, V. R. (1989). Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily.Cell 56, 855-862.[CrossRef] [Google Scholar]
  144. Milone, M. C. & Fitzgerald-Bocarsly, P. (1998). The mannose receptor mediates induction of IFN-α in peripheral blood dendritic cells by enveloped RNA and DNA viruses.Journal of Immunology 162, 2391-2399. [Google Scholar]
  145. Mondor, I., Ugolini, S. & Sattentau, Q. J. (1998). Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gp120 dependent and requires cell surface heparans. Journal of Virology 72, 3623-3634. [Google Scholar]
  146. Montgomery, R. I., Warner, M. S., Lum, B. J. & Spear, P. G. (1996). Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family.Cell 87, 427-436.[CrossRef] [Google Scholar]
  147. Mrkic, B., Pavlovic, J., Rulicke, T., Volpe, P., Buchholz, C. J., Hourcade, D., Atkinson, J. P., Aguzzi, A. & Cattaneo, R. (1998). Measles virus spread and pathogenesis in genetically modified mice.Journal of Virology 72, 7420-7427. [Google Scholar]
  148. Nanan, R., Chittka, B., Hadam, M. & Kreth, H. W. (1999). Measles virus infection causes transient depletion of activated T cells from peripheral circulation.Journal of Clinical Virology 12, 201-210.[CrossRef] [Google Scholar]
  149. Naniche, D., Wild, T. F., Rabourdin-Combe, C. & Gerlier, D. (1993). Measles virus haemagglutinin induces down-regulation of gp57/67, a molecule involved in virus binding. Journal of General Virology 74, 1073-1079.[CrossRef] [Google Scholar]
  150. Nedellec, P., Dveksler, G. S., Daniels, E., Turbide, C., Chow, B., Basile, A. A., Holmes, K. V. & Beauchemin, N. (1994). Bgp2, a new member of the carcinoembryonic antigen-related gene family, encodes an alternative receptor for mouse hepatitis viruses.Journal of Virology 68, 4525-4537. [Google Scholar]
  151. Nemerow, G. R. & Cooper, N. R. (1992). CR2 (CD21) mediated infection of B lymphocytes by Epstein–Barr virus.Seminars in Virology 3, 117-124. [Google Scholar]
  152. Nemerow, G. R., Siaw, M. F. E. & Cooper, N. R. (1986). Purification of the Epstein–Barr virus/C3d complement receptor of human B lymphocytes: antigenic and functional properties of the purified protein.Journal of Virology 58, 709-712. [Google Scholar]
  153. Niewiesk, S., Eisenhuth, I., Fooks, A., Clegg, C. S., Schnorr, J.-J., Schneider-Schaulies, S. & ter Meulen, V. (1997a). Measles virus-induced immune suppression in the cotton rat (Sigmodon hispidus) model depends on viral glycoproteins.Journal of Virology 71, 7214-7219. [Google Scholar]
  154. Niewiesk, S., Schneider-Schaulies, J., Ohnimus, H., Jassoy, C., Schneider-Schaulies, S., Diamond, L., Logan, S. & ter Meulen, V. (1997b). CD46 expression does not overcome the intracellular block of measles virus replication in transgenic rats.Journal of Virology 71, 7969-7973. [Google Scholar]
  155. Nomoto, A., Koike, S. & Aoki, J. (1994). Tissue tropism and species specificity of poliovirus infection.Trends in Microbiology 2, 47-51.[CrossRef] [Google Scholar]
  156. Ogata, A., Czub, S., Ogata, S., Cosby, S. L., McQuaid, S., Budka, H., ter Meulen, V. & Schneider-Schaulies, J. (1997). Absence of measles virus receptor (CD46) in lesions of subacute sclerosing panencephalitis brains.Acta Neuropathologica 94, 444-449.[CrossRef] [Google Scholar]
  157. Ohgimoto, S., Tabata, N., Suga, S., Nishio, M., Ohta, H., Tsurudome, M., Komada, H., Kawano, M., Watanabe, N. & Ito, Y. (1995). Molecular characterization of fusion regulatory protein-1 (FRP-1) that induces multinucleated giant cell formation of monocytes and HIV gp160-mediated cell fusion: FRP-1 and 4F2/CD98 are identical molecules.Journal of Immunology 135, 3585-3592. [Google Scholar]
  158. Ohta, H., Tsurudome, M., Matsumura, H., Koga, Y., Morikawa, S., Kawano, M., Kusugawa, S., Komada, H., Nishio, M. & Ito, Y. (1994). Molecular and biological characterization of fusion regulatory proteins (FRPs): anti-FRP mAb induced HIV-mediated cell fusion via an integrin system.EMBO Journal 13, 2044-2055. [Google Scholar]
  159. Okamoto, K., Tsurudome, M., Ohgimoto, S., Kawano, M., Nishio, M., Komada, H., Ito, M., Sakakura, Y. & Ito, Y. (1997). An anti-fusion regulatory protein-1 monoclonal antibody suppresses human parainfluenza virus type 2-induced cell fusion.Journal of General Virology 78, 83-89. [Google Scholar]
  160. Oldstone, M. B. A., Lewicki, H., Thomas, D., Tishon, A., Dales, S., Patterson, J., Manchester, M., Homann, D., Naniche, D. & Holz, A. (1999). Measles virus infection in a transgenic model: virus-induced immunosuppression and central nervous system disease.Cell 98, 629-640.[CrossRef] [Google Scholar]
  161. Olsen, J., Cowell, G. M., Konigshofer, E., Danielsen, E. M., Moller, J., Laustsen, L., Hansen, O. C., Welinder, G. K., Engberg, J., Hunziker, W., Spiess, M., Sjöström, H. & Noren, O. (1988). Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA.FEBS Letters 238, 307-314.[CrossRef] [Google Scholar]
  162. Pileri, P., Uematsu, Y., Campagnoli, S., Galli, G., Falugi, F., Petracca, R., Weiner, A. J., Houghton, M., Rosa, D., Grandi, G. & Abrignani, S. (1998). Binding of hepatitis C virus to CD81.Science 282, 938-941.[CrossRef] [Google Scholar]
  163. Putnak, J. R., Niranjan, K.-T. & Innis, B. L. (1997). A putative cellular receptor for dengue viruses.Nature Medicine 3, 828-829.[CrossRef] [Google Scholar]
  164. Racaniello, V. R. (1996). Early events in poliovirus infection: virus–receptor interactions.Proceedings of the National Academy of Sciences, USA 93, 11378-11381.[CrossRef] [Google Scholar]
  165. Radecke, F., Spielhofer, P., Schneider, H., Kaelin, K., Huber, M., Dötsch, C., Christiansen, G. & Billeter, M. A. (1995). Rescue of measles viruses from cloned DNA.EMBO Journal 14, 5773-5784. [Google Scholar]
  166. Raja, N. U., Vincent, M. J. & Jabbar, M. A. (1994). Vpu-mediated proteolysis of gp160/CD4 chimeric envelope glycoproteins in the endoplasmic reticulum: requirement of both the anchor and cytoplasmic domains of CD4.Virology 204, 357-366.[CrossRef] [Google Scholar]
  167. Rall, G. F., Manchester, M., Daniels, L. R., Callahan, E. M., Belman, A. R. & Oldstone, M. B. A. (1997). A transgenic mouse model for measles virus infection of the brain. Proceedings of the National Academy of Sciences, USA 94, 4659-4663.[CrossRef] [Google Scholar]
  168. Ren, R., Costantini, F., Gorgacz, E. J., Lee, J. J. & Racaniello, V. R. (1990). Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis.Cell 63, 353-362.[CrossRef] [Google Scholar]
  169. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. (1995). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution.Nature 375, 291-298.[CrossRef] [Google Scholar]
  170. Roelvink, P. W., Lizonova, A., Lee, J. G. M., Li, Y., Bergelson, J. M., Finberg, R. W., Brough, D. E., Kovesdi, I. & Wickham, T. J. (1998). The coxsackievirus–adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F.Journal of Virology 72, 7909-7915. [Google Scholar]
  171. Roelvink, P. W., Lee, G. M., Einfeld, D. A., Kovesdi, I. & Wickham, T. J. (1999). Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae.Science 286, 1568-1571.[CrossRef] [Google Scholar]
  172. Ruoslahti, E. & Reed, J. (1999). New way to activate caspases.Nature 397, 479-480. [Google Scholar]
  173. Samson, M., Libert, F., Doranz, B. J., Rucker, J., Liesnard, C., Farber, C. M., Saragosti, S., Lapoumeroulie, C., Cognaux, J., Forceille, C., Muyldermans, G., Verhofstede, C., Burtonboy, G., Georges, M., Imai, T., Rana, S., Yi, Y. J., Smyth, R. J., Collman, R. G., Doms, R. W., Vassart, G. & Parmentier, M. (1996). Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene.Nature 382, 722-725.[CrossRef] [Google Scholar]
  174. Schlender, J., Schnorr, J.-J., Spielhofer, P., Cathomen, T., Cattaneo, R., Billeter, M. A., ter Meulen, V. & Schneider-Schaulies, S. (1996). Interaction of measles virus glycoproteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro.Proceedings of the National Academy of Sciences, USA 93, 13194-13199.[CrossRef] [Google Scholar]
  175. Schmid, E., Zurbriggen, A., Gassen, U., Rima, B. K., ter Meulen, V. & Schneider-Schaulies, J. (2000). Antibodies to CD9, a tetraspan transmembrane protein, inhibit canine distemper virus (CDV)-induced cell-cell fusion, but not virus-cell fusion. Submitted for publication.
  176. Schneider-Schaulies, S. & ter Meulen, V. (1999). Measles virus induced immunosuppression.Nova Acta Leopoldina 307, 185-197. [Google Scholar]
  177. Schneider-Schaulies, J., Schnorr, J.-J., Brinckmann, U., Dunster, L. M., Baczko, K., Schneider-Schaulies, S. & ter Meulen, V. (1995a). Receptor usage and differential downregulation of CD46 by measles virus wild type and vaccine strains.Proceedings of the National Academy of Sciences, USA 92, 3943-3947.[CrossRef] [Google Scholar]
  178. Schneider-Schaulies, J., Dunster, L. M., Kobune, F., Rima, B. K. & ter Meulen, V. (1995b). Differential downregulation of CD46 by measles virus strains. Journal of Virology 69, 7257-7259. [Google Scholar]
  179. Schneider-Schaulies, J., Schnorr, J.-J., Schlender, J., Dunster, L. M., Schneider-Schaulies, S. & ter Meulen, V. (1996). Receptor (CD46) modulation and complement-mediated lysis of uninfected cells after contact with measles virus-infected cells. Journal of Virology 70, 255-263. [Google Scholar]
  180. Schneider-Schaulies, J., Niewiesk, S., Schneider-Schaulies, S. & ter Meulen, V. (1999). Measles virus in the CNS: the role of viral and host factors for the establishment and maintenance of a persistent infection. Journal of Neurovirology 5, 613-622.[CrossRef] [Google Scholar]
  181. Schnell, M. J., Johnson, J. E., Buonocore, L. & Rose, J. K. (1997). Construction of a novel virus that targets HIV-1-infected cells and controls HIV-1 infection. Cell 90, 849-857.[CrossRef] [Google Scholar]
  182. Schnorr, J.-J., Dunster, L. M., Nanan, R., Schneider-Schaulies, J., Schneider-Schaulies, S. & ter Meulen, V. (1995). Measles virus-induced down-regulation of CD46 is associated with enhanced sensitivity to complement-mediated lysis of infected cells. European Journal of Immunology 25, 976-984.[CrossRef] [Google Scholar]
  183. Shafren, D. R. (1998). Viral cell entry induced by cross-linked decay-accelerating factor. Journal of Virology 72, 9407-9412. [Google Scholar]
  184. Shafren, D. R., Bates, R. C., Agrez, M. V., Herd, R. L., Burne, G. F. & Barry, R. D. (1995). Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment. Journal of Virology 69, 3873-3877. [Google Scholar]
  185. Shieh, M. T., WuDunn, D., Montgomery, R. I., Esko, J. D. & Spear, P. G. (1992). Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. Journal of Cell Biology 116, 1273-1281.[CrossRef] [Google Scholar]
  186. Shiroki, K., Ishii, T., Aoki, T., Ota, Y., Yang, W. X., Komatsu, T., Ami, Y., Arita, M., Abe, S., Hashizume, S. & Nomoto, A. (1997). Host range phenotype induced in the internal ribosomal entry site of poliovirus RNA. Journal of Virology 71, 1-8. [Google Scholar]
  187. Shukla, D., Liu, J., Blaiklock, P., Shworak, N. W., Bai, X., Esko, J. D., Cohen, G. H., Eisenberg, R. J., Rosenberg, R. D. & Spear, P. G. (1999). A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99, 13-22.[CrossRef] [Google Scholar]
  188. Siddell, S. G. (1995). The Coronaviridae: an introduction. In The Coronaviridae, pp. 1-10. Edited by S. G. Siddell. New York: Plenum Press.
  189. Skehel, J. J., Steinhauer, D., Wharton, S. A., Bullough, P. A., Hughson, F. M., Watowich, S. J. & Wiley, D. C. (1994). Receptor binding and membrane fusion by influenza hemagglutinin. In Cellular Receptors for Animal Viruses, pp. 187-193. Edited by E. Wimmer. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press.
  190. Spear, P. G. (1993). Entry of alphaherpesviruses into cells.Seminars in Virology 4, 167-180.[CrossRef] [Google Scholar]
  191. Spetz, A. L., Patterson, B. K., Lore, K., Andersson, J. & Holmgren, L. (1999). Functional gene transfer of HIV DNA by an HIV receptor-independent mechanism. Journal of Immunology 163, 736-742. [Google Scholar]
  192. Steinhauer, D. A., Sauter, N. K., Skehel, J. J. & Wiley, D. C. (1992). Receptor binding and cell entry by influenza viruses. Seminars in Virology 3, 91-100. [Google Scholar]
  193. Stephens, J. C., Reich, D. E., Goldstein, D. B., Shin, H. D., Smith, M. W., Carrington, M., Winkler, C., Huttley, G. A., Allikmets, R., Schriml, L., Gerrard, B., Malasky, M., Ramos, M. D., Morlot, S., Tzetis, M., Oddoux, C., di Giovine, F. S., Nasiolas, G., Chandler, D., Aseev, M., Hanson, M., Kalaydjieva, L., Glavac, L., Gasparini, P., Kanavakis, E., Claustres, M., Kambouris, M., Ostrer, H., Duff, G., Baranov, V., Sibul, H., Metspalu, A., Goldman, D., Martin, N., Duffy, D., Schmidtke, J., Estivil, X., O’Brien, S. J. & Dean, M. (1998). Dating the origin of the CCR5-delta 32 AIDS-resistance allele by coalescence of haplotypes. American Journal of Human Genetics 62, 1507-1515.[CrossRef] [Google Scholar]
  194. Stevenson, S. C., Rollence, M., Marshall-Neef, J. & McLelland, A. (1997). Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein. Journal of Virology 71, 4782-4790. [Google Scholar]
  195. Stiasny, K., Allison, S. L., Marchler-Bauer, A., Kunz, C. & Heinz, F. (1996). Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. Journal of Virology 70, 8142-8147. [Google Scholar]
  196. Sullivan, N., Sun, Y., Li, J., Hofmann, W. & Sodroski, J. (1995). Replicative function and neutralization sensitivity of envelope glycoproteins from primary and T-cell line-passaged human immunodeficiency virus type 1 isolates. Journal of Virology 69, 4413-4420. [Google Scholar]
  197. Summerford, C. & Samulski, R. J. (1998). Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. Journal of Virology 72, 1438-1445. [Google Scholar]
  198. Tabata, N., Ido, M., Suga, S., Ohgimoto, S., Tsurudome, M., Kawano, M., Nishio, M., Watanabe, N., Okamoto, K., Komada, H., Sakurai, M. & Ito, Y. (1998). Protein tyrosine kinase activation provides an early and obligatory signal in anti-FRP-1/CD98/4F2 monoclonal antibody induced cell fusion mediated by HIV gp160. Medical Microbiology and Immunology 186, 115-123. [Google Scholar]
  199. Takahashi, K., Nakanishi, H., Miyahara, M., Mandai, K., Satoh, K., Satoh, A., Nishioka, H., Aoki, J., Nomoto, A., Mizoguchi, A. & Takai, Y. (1999). Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with afadin, a PDZ domain-containing protein. Journal of Cell Biology 145, 539-549.[CrossRef] [Google Scholar]
  200. Tanaka, K., Xie, M. & Yanagi, Y. (1998). The hemagglutinin of recent measles virus isolates induces cell fusion in a marmoset cell line, but not in other CD46-positive human and monkey cell lines, when expressed together with the F protein. Archives of Virology 143, 213-225.[CrossRef] [Google Scholar]
  201. Tanner, J., Weis, J., Fearon, D., Whang, Y. & Kieff, E. (1987). Epstein–Barr virus gp350/220 binding to B lymphocytes C3d receptor mediates adsorption, capping, and endocytosis. Cell 50, 203-213.[CrossRef] [Google Scholar]
  202. Tedder, T. F., Goldmacher, V. S., Lambert, J. M. & Schlossman, S. F. (1986). Epstein–Barr virus binding induces internalization of the C3d receptors: a novel immunotoxin delivery system. Journal of Immunology 137, 1387-1391. [Google Scholar]
  203. Teng, M. N., Borrow, P., Oldstone, M. B. A. & de la Torre, J. C. (1996). A single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus associated with the ability to cause growth hormone deficiency syndrome. Journal of Virology 70, 8438-8443. [Google Scholar]
  204. Thompson, P., Lu, J. & Kaplan, G. G. (1998). The cys-rich region of the hepatitis A virus cellular receptor 1 (HAVcr-1) is required for binding of hepatitis A virus and protective monoclonal antibody 190/4. Journal of Virology 72, 3751-3761. [Google Scholar]
  205. Tong, S., Li, J. & Wands, J. R. (1999). Carboxypeptidase D is an avian hepatitis B virus receptor. Journal of Virology 73, 8696-8702. [Google Scholar]
  206. Tresnan, D. B. & Holmes, K. V. (1998). Feline aminopeptidase N is a receptor for all group I coronaviruses. Advances in Experimental Medicine and Biology 440, 69-75. [Google Scholar]
  207. Triantafilou, M., Triantafilou, K., Wilson, K. M., Takada, Y., Fernandez, N. & Stanway, G. (1999). Involvement of β2-microglobulin and integrin αvβ3 molecules in the coxsackievirus A9 infectious cycle. Journal of General Virology 80, 2591-2600. [Google Scholar]
  208. Tufaro, F. (1997). Virus entry: two receptors are better than one. Trends in Microbiology 5, 257-258.[CrossRef] [Google Scholar]
  209. Urban, S., Breiner, K. M., Fehler, F., Klingmüller, U. & Schaller, H. (1998). Avian hepatitis B virus infection is initiated by the interaction of a distinct pre-S-subdomain with the cellular receptor gp180. Journal of Virology 72, 8089-8097. [Google Scholar]
  210. Urbanska, E. M., Chambers, B. J., Ljunggren, H. G., Norrby, E. & Kristensson, K. (1997). Spread of measles virus through axonal pathways into limbic structures in the brain of TAP –/– mice.Journal of Medical Virology 52, 362-369.[CrossRef] [Google Scholar]
  211. Wadell, G. (1990). Adenoviruses. In Principles and Practice of Clinical Virology, pp. 267-287. Edited by A. J. Zuckerman, J. E. Banatvala & J. R. Pattison. Chichester, UK: John Wiley & Sons.
  212. Ward, T., Pipkin, P. A., Clarkson, N. A., Stone, D. M., Minor, P. D. & Almond, J. W. (1994). Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO Journal 13, 5070-5074. [Google Scholar]
  213. Warner, M. S., Geraghty, R. J., Martinez, W. M., Montgomery, R. I., Whitbeck, J. C., Xu, R., Eisenberg, R. J., Cohen, G. H. & Spear, P. G. (1998). A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus. Virology 246, 179-189.[CrossRef] [Google Scholar]
  214. Weidmann, A., Maisner, A., Garten, W., Seufert, M., ter Meulen, V. & Schneider-Schaulies, S. (2000). Proteolytic cleavage of the fusion protein but not membrane fusion is required for measles virus-induced immunosuppression in vitro. Journal of Virology 74, 1985-1993.[CrossRef] [Google Scholar]
  215. White, J. M. (1994). Fusion of influenza virus in endosomes: role of the hemagglutinin. In Cellular Receptors for Animal Viruses, pp. 281-321. Edited by E. Wimmer. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press.
  216. Wickham, T. J., Mathias, P., Cheresh, D. A. & Nemerow, G. R. (1993). Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell 73, 309-319.[CrossRef] [Google Scholar]
  217. Willett, B., Hosie, M., Shaw, A. & Neil, J. (1997). Inhibition of feline immunodeficiency virus infection by CD9 antibodies operates after viral entry and is independent of virus tropism. Journal of General Virology 78, 611-618. [Google Scholar]
  218. Williams, R. K., Jiang, G. S., Snyder, S. W., Frana, M. F. & Holmes, K. V. (1990). Purification of the 110-kilodalton glycoprotein receptor for mouse hepatitis virus (MHV)-A59 from mouse liver and identification of a non-functional, homologous protein in MHV-resistant SJL/J mice. Journal of Virology 64, 3817-3823. [Google Scholar]
  219. Williams, R. K., Jiang, G. S. & Holmes, K. V. (1991). Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proceedings of the National Academy of Sciences, USA 88, 5533-5536.[CrossRef] [Google Scholar]
  220. Wimmer, E., Harber, J. J., Bibb, J. A., Gromeier, M., Lu, H.-H. & Bernhardt, G. (1994). Poliovirus receptors. In Cellular Receptors for Animal Viruses, pp. 101-128. Edited by E. Wimmer. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  221. Wong, T. C., Yant, S., Harder, B. J., Korte-Safarty, J. & Hirano, A. (1997). The cytoplasmic domains of complement regulatory protein CD46 interact with multiple kinases in macrophages. Journal of Leukocyte Biology 62, 892-900. [Google Scholar]
  222. Yeager, C. L., Ashmun, R. A., Williams, R. K., Cardellichio, C. B., Shapiro, L. H., Look, A. T. & Holmes, K. V. (1992). Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357, 420-422.[CrossRef] [Google Scholar]
  223. Yokomori, K. & Kai, M. L. (1992). Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. Journal of Virology 66, 6194-6199. [Google Scholar]
  224. Yoshiyama, H., Imai, S., Shimizu, N. & Takada, K. (1997). Epstein–Barr virus infection of human gastric carcinoma cells: implication of the existence of a new virus receptor different from CD21. Journal of Virology 71, 5688-5691. [Google Scholar]
  225. Zelus, B. D., Wessner, D. R., Williams, R. K., Pensiero, M. N., Phibbs, F. T., DeSouza, M., Dveksler, G. S. & Holmes, K. V. (1998). Purified, soluble recombinant mouse hepatitis virus receptor, Bgp1b, and Bgp2 murine coronavirus receptors differ in mouse hepatitis virus binding and neutralization activities. Journal of Virology 72, 7237-7244. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-6-1413
Loading
/content/journal/jgv/10.1099/0022-1317-81-6-1413
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error