Preview this article:
Zoom in

Cellular receptors for viruses: links to tropism and pathogenesis, Page 1 of 1

| /docserver/preview/fulltext/jgv/81/6/0811413a-1.gif

There is no abstract available for this article.
Use the preview function to the left.


Article metrics loading...

Loading full text...

Full text loading...



  1. Agrez, M. V., Shafren, D. R., Gu, X., Cox, K., Sheppard, D. & Barry, R. D. (1997). Integrin αvβ6 enhances coxsackievirus B1 lytic infection of human colon cancer cells. Virology 239, 71-77.[CrossRef] [Google Scholar]
  2. Aiken, C., Konner, J., Landau, N. R., Lenburg, M. E. & Trono, D. (1994). Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell 76, 853-864.[CrossRef] [Google Scholar]
  3. Allan, J. S., Strauss, J. & Buck, D. W. (1990). Enhancement of SIV infection with soluble receptor molecules. Science 247, 1084-1088.[CrossRef] [Google Scholar]
  4. Allen, I. V., McQuaid, S., McMahon, J., Kirk, J. & McConnel, R. (1996). The significance of measles virus antigen and genome distribution in the CNS in SSPE for mechanisms of viral spread and demyelination. Journal of Neuropathology & Experimental Neurology 55, 471-480.[CrossRef] [Google Scholar]
  5. Arita, M., Koike, S., Aoki, J., Horie, H. & Nomoto, A. (1998). Interaction of poliovirus with its purified receptor and conformational alteration in the virion. Journal of Virology 72, 3578-3586. [Google Scholar]
  6. Asher, L. V., Binn, L. N., Mensing, T. L., Marchwicki, R. H., Vassell, R. A. & Young, G. D. (1995). Pathogenesis of hepatitis A in orally inoculated owl monkeys (Aotus trivirgatus).Journal of Medical Virology 47, 260-268.[CrossRef] [Google Scholar]
  7. Ashmun, R. A., Shapiro, L. H. & Look, A. T. (1992). Deletion of the zinc-binding motif of CD13/aminopeptidase N molecules results in loss of epitopes that mediate binding of inhibitory antibodies.Blood 79, 3344-3349. [Google Scholar]
  8. Baker, K. A., Dutch, R. E., Lamb, R. A. & Jardetzky, T. S. (1999). Structural basis for paramyxovirus-mediated membrane fusion.Molecular Cell 3, 309-319.[CrossRef] [Google Scholar]
  9. Balam, P., Davis-Poynter, N., Bell, S., Atkinson, H., Browne, H. & Minson, T. (1984). An analysis of in vitro and in vivo phenotypes of mutants of herpes simplex virus type 1 lacking glycoproteins gG, gE, gI or the putative gJ.Journal of General Virology 75, 1245-1258. [Google Scholar]
  10. Bartz, R., Brinckmann, U., Dunster, L., Rima, B., ter Meulen, V. & Schneider-Schaulies, J. (1996). Mapping amino acids of the measles virus hemagglutinin responsible for receptor (CD46) downregulation.Virology 224, 334-337.[CrossRef] [Google Scholar]
  11. Bartz, R., Firsching, R., Rima, B., ter Meulen, V. & Schneider-Schaulies, J. (1998). Differential receptor usage by measles virus strains.Journal of General Virology 79, 1015-1025. [Google Scholar]
  12. Becker, S., Spiess, M. & Klenk, H.-D. (1995). The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus.Journal of General Virology 76, 393-399.[CrossRef] [Google Scholar]
  13. Beisel, C., Tanner, J., Matsuo, T., Thorley-Lawson, D., Kezdy, F. & Kieff, E. (1985). Two major outer envelope glycoproteins of Epstein–Barr virus are encoded by the same gene.Journal of Virology 54, 665-674. [Google Scholar]
  14. Bergelson, J. M., Chen, M., Solomon, K. R., John, N. F., Lin, H. & Finberg, R. W. (1994). Decay accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses.Proceedings of the National Academy of Sciences, USA 91, 6245-6248.[CrossRef] [Google Scholar]
  15. Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., Horwitz, M. S., Crowell, R. L. & Finberg, R. W. (1997). Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5.Science 275, 1320-1323.[CrossRef] [Google Scholar]
  16. Berger, E. A., Murphy, P. M. & Farber, J. M. (1999). Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease.Annual Review of Immunology 17, 657-700.[CrossRef] [Google Scholar]
  17. Bernhardt, G., Bibb, J. A., Bradley, J. & Wimmer, E. (1994). Molecular characterization of the cellular receptor for poliovirus.Virology 199, 105-110.[CrossRef] [Google Scholar]
  18. Bewley, M. C., Springer, K., Zhang, Y.-B., Freimuth, P. & Flanagan, J. M. (1999). Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR.Science 286, 1579-1583.[CrossRef] [Google Scholar]
  19. Bhat, S., Spitalnid, S. L., Gonzalez-Scarano, F. & Silberberg, D. H. (1991). Galactosyl ceramide or a derivative is an essential component of the neural receptor for human immunodeficiency virus type 1 envelope glycoprotein gp120.Proceedings of the National Academy of Sciences, USA 88, 7131-7134.[CrossRef] [Google Scholar]
  20. Bhat, S., Mettus, R. V., Reddy, E. P., Ugen, K. E., Srikanthan, V., Williams, W. V. & Weiner, D. B. (1993). The galactosyl ceramide/sulfatide receptor binding region of HIV-1 gp120 maps to amino acids 206–275.AIDS Research and Human Retroviruses 9, 175-181.[CrossRef] [Google Scholar]
  21. Bishop, N. E. (1999). Conformational changes in the hepatitis A virus capsid in response to acidic conditions.Journal of Medical Microbiology 48, 443-450.[CrossRef] [Google Scholar]
  22. Bitzer, M., Lauer, U., Baumann, C., Spiegel, M., Gregor, M. & Neubert, W. J. (1997). Sendai virus efficiently infects cells via the asialoglycoprotein receptor and requires the presence of cleaved F0 precursor proteins for this alternative route of cell entry.Journal of Virology 71, 5481-5486. [Google Scholar]
  23. Blixenkrone-Moller, M., Bernard, A., Bencsik, A., Sixt, N., Diamond, L. E., Logan, J. S. & Wild, T. F. (1998). Role of CD46 in measles virus infection in CD46 transgenic mice.Virology 249, 238-248.[CrossRef] [Google Scholar]
  24. Borrow, P. & Oldstone, M. B. A. (1992). Characterization of lymphocytic choriomeningitis virus-binding protein(s): a candidate cellular receptor for the virus.Journal of Virology 66, 7270-7281. [Google Scholar]
  25. Borrow, P. & Oldstone, M. B. A. (1994). Mechanism of lymphocytic choriomeningitis virus entry into cells. Virology 198, 1-9.[CrossRef] [Google Scholar]
  26. Borrow, P., Evans, C. F. & Oldstone, M. B. A. (1995). Virus-induced immunosuppression: immune system-mediated destruction of virus-infected dendritic cells results in generalized immune suppression. Journal of Virology 69, 1059-1070. [Google Scholar]
  27. Breiner, K. M., Urban, S. & Schaller, H. (1998). Carboxypeptidase D (gp180), a Golgi-resident protein, functions in the attachment and entry of avian hepatitis B viruses.Journal of Virology 72, 8098-8104. [Google Scholar]
  28. Brunetti, C. R., Burke, R. L., Hoflack, B., Ludwig, T., Dingwell, K. S. & Johnson, D. C. (1995). Role of mannose-6-phosphate receptors in herpes simplex virus entry into cells and cell-to-cell transmission.Journal of Virology 69, 3517-3528. [Google Scholar]
  29. Buchholz, C. J., Koller, D., Devaux, P., Mumenthaler, C., Schneider-Schaulies, J., Braun, W., Gerlier, D. & Cattaneo, R. (1997). Mapping of the primary binding site of measles virus to its receptor CD46.Journal of Biological Chemistry 272, 22072-22079.[CrossRef] [Google Scholar]
  30. Budkowska, A., Quan, C., Groh, F., Bedossa, P., Dubreuil, P., Bouvet, J. P. & Pillot, J. (1993). Hepatitis B virus (HBV) binding factor in human serum: candidate for a soluble form of hepatocyte HBV receptor.Journal of Virology 67, 4316-4322. [Google Scholar]
  31. Budkowska, A., Maillard, P., Theret, N., Groh, F., Possehl, C., Topilko, A. & Crainic, R. (1997). Activation of the envelope proteins by a metalloproteinase enables attachment and entry of the hepatitis B virus into T-lymphocyte.Virology 237, 10-22.[CrossRef] [Google Scholar]
  32. Byrnes, K. J. & Griffin, D. E. (1998). Binding of Sindbis virus to cell surface heparan sulfate.Journal of Virology 72, 7349-7356. [Google Scholar]
  33. Cao, W., Henry, M. D., Borrow, P., Yamada, H., Elder, J. H., Ravkov, E. V., Nichol, S. T., Compans, R., Campbell, K. P. & Oldstone, M. B. A. (1998). Identification of α-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus.Science 282, 2079-2081.[CrossRef] [Google Scholar]
  34. Carr, C. M., Chaudhry, C. & Kim, P. S. (1997). Influenza hemagglutinin is spring-loaded by a metastable native conformation.Proceedings of the National Academy of Sciences, USA 94, 14306-14313.[CrossRef] [Google Scholar]
  35. Casasnovas, J. M., Larvie, M. & Stehle, T. (1999). Crystal structure of two CD46 domains reveals an extended measles virus-binding surface.EMBO Journal 18, 2911-2922.[CrossRef] [Google Scholar]
  36. Cathomen, T., Mrkic, B., Spehner, D., Drillien, R., Naef, R., Pavlovic, J., Aguzzi, A., Billeter, M. A. & Cattaneo, R. (1998a). A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain.EMBO Journal 17, 3899-3908.[CrossRef] [Google Scholar]
  37. Cathomen, T., Naim, H. Y. & Cattaneo, R. (1998b). Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. Journal of Virology 72, 1224-1234. [Google Scholar]
  38. Chapman, M. S. & Rossman, M. G. (1993). Comparison of the surface properties of picornaviruses: strategies for hiding the receptor site from immune surveillance.Virology 195, 745-752.[CrossRef] [Google Scholar]
  39. Chen, D. S., Asanaka, M., Yokomori, K., Wang, F., Hwang, S. B., Li, H. P. & Lai, M. M. (1995). A pregnancy-specific glycoprotein is expressed in the brain and serves as a receptor for mouse hepatitis virus.Proceedings of the National Academy of Sciences, USA 92, 12095-12099.[CrossRef] [Google Scholar]
  40. Chen, Y., Maguire, T., Hileman, R. E., Fromm, J. R., Esko, J. D., Linhardt, R. J. & Marks, R. M. (1997). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate.Nature Medicine 3, 866-871.[CrossRef] [Google Scholar]
  41. Chiu, C. Y., Mathias, P., Nemerow, G. R. & Stewart, P. L. (1999). Structure of adenovirus complexed with its internalization receptor, αvβ5 integrin.Journal of Virology 73, 6759-6768. [Google Scholar]
  42. Chung, C. S., Hsiao, J. C., Chang, Y. S. & Chang, W. (1998). A27L protein mediates vaccinia virus interaction with cell surface heparan sulfate.Journal of Virology 72, 1577-1585. [Google Scholar]
  43. Colston, W. & Racaniello, V. R. (1994). Soluble receptor-resistant poliovirus mutants identify surface and internal capsid residues that control interaction with the cell receptor.EMBO Journal 13, 5855-5862. [Google Scholar]
  44. Compans, R. W. (1995). Virus entry and release in polarized epithelial cells.Current Topics in Microbiology and Immunology 202, 209-219. [Google Scholar]
  45. Compton, S. R., Stephensen, C. B., Snyder, S. W., Weismiller, D. G. & Holmes, K. V. (1992). Coronavirus species specificity: murine coronavirus binds to a mouse-specific epitope on its carcinoembryonic antigen-related receptor glycoprotein.Journal of Virology 66, 7420-7428. [Google Scholar]
  46. Compton, T., Nowlin, D. M. & Cooper, N. R. (1993). Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate.Virology 193, 834-841.[CrossRef] [Google Scholar]
  47. Corey, L. & Spear, P. G. (1986a). Infections with herpes simplex viruses (1).New England Journal of Medicine 314, 686-691.[CrossRef] [Google Scholar]
  48. Corey, L. & Spear, P. G. (1986b). Infections with herpes simplex viruses (2).New England Journal of Medicine 314, 749-757.[CrossRef] [Google Scholar]
  49. Coutelier, J.-P., Godfraind, C., Dveksler, G. S., Wysocka, M., Cardellichio, H., Noel, H. & Holmes, K. V. (1994). B lymphocyte and macrophage expression of carcinoembryonic antigen-related adhesion molecules that serve as receptors for murine coronavirus.European Journal of Immunology 24, 1383-1390.[CrossRef] [Google Scholar]
  50. Daenke, S., McCracken, S. A. & Booth, S. (1999). Human T-cell leukaemia/lymphoma virus type 1 syncytium formation is regulated in a cell-specific manner by ICAM-1, ICAM-3 and VCAM-1 and can be inhibited by antibodies to integrin β2 or β7.Journal of General Virology 80, 1429-1436. [Google Scholar]
  51. Deatly, A. M., Coleman, J. W., McMullen, G., McAuliffe, M., Jayarama, V., Cupo, A., Crowley, J. C., McWilliams, T. & Taffs, R. E. (1999). Poliomyelitis in intraspinally inoculated poliovirus receptor transgenic mice.Virology 255, 221-227.[CrossRef] [Google Scholar]
  52. Delmas, B., Gelfi, J., L’Haridon, R., Vogel, L. K., Sjostrom, H., Noren, O. & Laude, H. (1992). Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV.Nature 357, 417-420.[CrossRef] [Google Scholar]
  53. Delmas, B., Gelfi, J., Kut, E., Syostrom, H., Noren, O. & Laude, H. (1994). Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site.Journal of Virology 68, 5216-5224. [Google Scholar]
  54. Denner, J. (1998). Immunosuppression by retroviruses: implications for xenotransplantation.Xenotransplantation 862, 75-86. [Google Scholar]
  55. De Parseval, A., Lerner, D. L., Borrow, P., Willett, B. J. & Elder, J. H. (1997). Blocking of feline immunodeficiency virus infection by a monoclonal antibody to CD9 is via inhibition of virus release rather than interference with receptor binding.Journal of Virology 71, 5742-5749. [Google Scholar]
  56. Dingwell, K. S., Brunetti, C. R., Hendricks, R. L., Tang, Q., Tang, M., Rainbow, A. J. & Johnson, D. C. (1994). Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells.Journal of Virology 68, 834-845. [Google Scholar]
  57. Dörig, R. E., Marcil, A. & Richardson, C. D. (1994). CD46, a primate-specific receptor for measles virus.Trends in Microbiology 2, 312-318.[CrossRef] [Google Scholar]
  58. Dove, A. W. & Racaniello, V. R. (1997). Cold-adapted poliovirus mutants bypass a post entry replication block.Journal of Virology 71, 4728-4735. [Google Scholar]
  59. Duprex, W. P., Duffy, I., McQuaid, S., Hamill, L., Cosby, S. L., Billeter, M. A., Schneider-Schaulies, J., ter Meulen, V. & Rima, B. K. (1999a). The H gene of rodent brain-adapted measles virus confers neurovirulence to the Edmonston vaccine strain.Journal of Virology 73, 6916-6922. [Google Scholar]
  60. Duprex, W. P., McQuaid, S., Hangartner, L., Billeter, M. A. & Rima, B. K. (1999b). Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus.Journal of Virology 73, 9568-9575. [Google Scholar]
  61. Dveksler, G. S., Pensiero, M. N., Cardellichio, C. B., Williams, R. K., Jiang, G. S., Holmes, K. V. & Dieffenbach, C. W. (1991). Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV.Journal of Virology 65, 6881-6891. [Google Scholar]
  62. Dveksler, G. S., Dieffenbach, C. W., Cardellichio, C. B., McCuaig, K., Pensiero, M. N., Jiang, G. S., Beauchemin, N. & Holmes, K. V. (1993a). Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus A59. Journal of Virology 67, 1-8. [Google Scholar]
  63. Dveksler, G. S., Pensiero, M. N., Dieffenbach, C. W., Cardellichio, C. B., Basile, A. A., Elia, P. E. & Holmes, K. V. (1993b). Mouse hepatitis virus strain A59 and blocking antireceptor monoclonal antibody bind to the N-terminal domain of cellular receptor.Proceedings of the National Academy of Sciences, USA 90, 1716-1720.[CrossRef] [Google Scholar]
  64. Eckert, D. M., Malashkevich, V. N., Hong, L. H., Carr, P. A. & Kim, P. S. (1999). Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket.Cell 99, 103-115.[CrossRef] [Google Scholar]
  65. Fauci, A. S. (1993). Multifactorial nature of human immunodeficiency virus disease: implications for therapy. Science 262, 1011-1018.[CrossRef] [Google Scholar]
  66. Fauci, A. S. (1996). Host factors and the pathogenesis of HIV-induced disease.Nature 384, 529-534.[CrossRef] [Google Scholar]
  67. Feigelstock, D., Thompson, P., Mattoo, P., Zhang, Y. & Kaplan, G. G. (1998). The human homolog of HAVcr-1 codes for a hepatitis A virus cellular receptor.Journal of Virology 72, 6621-6628. [Google Scholar]
  68. Firsching, R., Buchholz, C. J., Schneider, U., Cattaneo, R., ter Meulen, V. & Schneider-Schaulies, J. (1999). Measles virus spread by cell-cell contacts: uncoupling of contact-mediated receptor (CD46) downregulation from virus uptake.Journal of Virology 73, 5265-5273. [Google Scholar]
  69. Flint, M., Maidens, C., Loomis-Price, L. D., Shotton, C., Dubuisson, J., Monk, P., Higginbottom, A., Levy, S. & McKeating, J. A. (1999). Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81.Journal of Virology 73, 6235-6244. [Google Scholar]
  70. Freistadt, M. S. (1994). Distribution of the poliovirus receptor in human tissue. In Cellular Receptors for Animal Viruses, pp. 445-462. Edited by E. Wimmer. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press.
  71. Freistadt, M. S., Fleit, H. B. & Wimmer, E. (1993). Poliovirus receptor on human blood cells: a possible extraneural site of poliovirus replication.Virology 195, 798-803.[CrossRef] [Google Scholar]
  72. Garson, J. A., Lubach, D., Passas, J., Whitby, K. & Grant, P. R. (1999). Suramin blocks hepatitis C binding to human cells in vitro.Journal of Medical Virology 57, 238-242.[CrossRef] [Google Scholar]
  73. Geraghty, R. J., Krumenacher, C., Cohen, G. H., Eisenberg, R. J. & Spear, P. G. (1998). Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor.Science 280, 1618-1620.[CrossRef] [Google Scholar]
  74. Gerlier, D., Varior-Krishnan, G. & Devaux, P. (1995). CD46-mediated measles virus entry: a first key to host-range specificity.Trends in Microbiology 3, 338-345.[CrossRef] [Google Scholar]
  75. Ghali, M. & Schneider-Schaulies, J. (1998). Receptor (CD46)- and replication-mediated interleukin-6 induction by measles virus in human astrocytoma cells.Journal of Neurovirology 4, 521-530.[CrossRef] [Google Scholar]
  76. Godfraind, C. & Coutelier, J. P. (1998). Morphological analysis of mouse hepatitis virus A59-induced pathology with regard to viral receptor expression.Histology and Histopathology 13, 181-199. [Google Scholar]
  77. Godfraind, C., Langreth, S. G., Cardellichio, C. B., Knobler, R., Coutelier, J. P., Dubois-Dalcq, M. & Holmes, K. V. (1995). Tissue and cellular distribution of an adhesion molecule in the carcinoembryonic antigen family that serves as a receptor for mouse hepatitis virus.Laboratory Investigation 73, 615-627. [Google Scholar]
  78. Griffin, D. E. (1995). Immune responses during measles virus infection.Current Topics of Microbiology and Immunology 191, 117-134. [Google Scholar]
  79. Griffin, D. E. & Bellini, W. J. (1996). Measles virus. In Fields Virology, pp. 1267-1312. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia: Lippincott–Raven.
  80. Gromeier, M., Bossert, B., Arita, M., Nomoto, A. & Wimmer, E. (1999). Dual stem loops within the poliovirus internal entry site control neurovirulence.Journal of Virology 73, 958-964. [Google Scholar]
  81. Haraguchi, S., Good, R. A. & Day, N. K. (1995). Immunosuppressive retroviral peptides: cAMP and cytokin patterns.Immunology Today 16, 595-603.[CrossRef] [Google Scholar]
  82. Harouse, J. M., Laughlin, M. A., Pletcher, C., Friedman, H. M. & Gonzalez-Scarano, F. (1991). Entry of human immunodeficiency virus-1 into glial cells proceeds via an alternative, efficient pathway.Journal of Leukocyte Biology 49, 605-609. [Google Scholar]
  83. Haywood, A. M. (1994). Virus receptors: binding, adhesion strengthening, and changes in viral structure. Journal of Virology 68, 1-5. [Google Scholar]
  84. Hegyi, A. & Kolb, A. F. (1998). Characterization of determinants involved in the feline infectious peritonitis virus receptor function of feline aminopeptidase N.Journal of General Virology 79, 1387-1391. [Google Scholar]
  85. Hensley, L. E., Holmes, K. V., Beauchemin, N. & Baric, R. S. (1998). Virus–receptor interactions and interspecies transfer of a mouse hepatitis virus. Advances in Experimental Medicine and Biology 440, 33-41. [Google Scholar]
  86. Herbein, G., Mahlknecht, U., Batliwalla, F., Gregersen, P., Pappas, T., Butler, J., O’Brien, W. A. & Verdin, E. (1998). Apoptosis of CD8+ T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4.Nature 395, 189-194.[CrossRef] [Google Scholar]
  87. Hirano, A., Yang, Z., Katayama, Y., Korte-Sarfaty, J. & Wong, T. C. (1999). Human CD46 enhances nitric oxide production in mouse macrophages in response to measles virus infection in the presence of gamma interferon: dependence on the CD46 cytoplasmic domains.Journal of Virology 73, 4776-4785. [Google Scholar]
  88. Hladik, F., Lentz, G., Akridge, R. E., Peterson, G., Kelley, H., McElroy, A. & McElrath, M. J. (1999). Dendritic cell–T cell interactions support coreceptor-independent human immunodeficiency virus type 1 transmission in the human genital tract.Journal of Virology 73, 5833-5842. [Google Scholar]
  89. Horvat, B., Rivailler, P., Varior-Krishnan, G., Cardoso, A., Gerlier, D. & Rabourdin-Combe, C. (1996). Transgenic mice expressing human measles virus (MV) receptor CD46 provide cells exhibiting different permissivities to MV infections.Journal of Virology 70, 6673-6681. [Google Scholar]
  90. Hsu, H. C., Chen, C. C., Huang, G. T. & Lee, P. H. (1996). Clonal Epstein–Barr virus associated cholangiocarcinoma with lymphoepithelioma-like component.Human Pathology 27, 848-850.[CrossRef] [Google Scholar]
  91. Hsu, E. C., Dörig, R., Sarangi, F., Marcil, A., Iorio, C. & Richardson, C. D. (1997). Artificial mutations and natural variations in the CD46 molecules from human and monkey cells define regions important for measles virus binding.Journal of Virology 71, 6144-6154. [Google Scholar]
  92. Hsu, E. C., Sarangi, F., Iorio, C., Sidhu, M. S., Udem, S. A., Dillehay, D. L., Xu, W., Rota, P., Bellini, W. J. & Richardson, C. D. (1998). A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells.Journal of Virology 72, 2905-2916. [Google Scholar]
  93. Hsu, E. C., Sabatinos, S., Hoedemaeker, F. J., Rose, D. R. & Richardson, C. D. (1999). Use of site-specific mutagenesis and monoclonal antibodies to map regions of CD46 that interact with measles virus H protein.Virology 258, 314-326.[CrossRef] [Google Scholar]
  94. Huang, S., Kamata, T., Takada, Y., Ruggeri, Z. M. & Nemerow, G. R. (1996a). Adenovirus interaction with distinct integrins mediate separate events in cell entry and gene delivery to hematopoietic cells.Journal of Virology 70, 4502-4508. [Google Scholar]
  95. Huang, Y. X., Paxton, W. A., Wolinsky, S. M., Neumann, A. U., Zhang, L. Q., Yazdanbakhsh, K., Kunstman, K., Erickson, D., Dragon, E., Landau, N. R., Phair, J., Ho, D. D. & Koup, R. A. (1996b). The role of a mutant CCR5 allele in HIV-1 transmission and disease progression.Nature Medicine 2, 1240-1243.[CrossRef] [Google Scholar]
  96. Hung, S.-H., Lee, P.-L., Chen, H.-W., Chen, L.-K., Kao, C.-L. & King, C.-C. (1999). Analysis of the steps involved in dengue virus entry into host cells.Virology 257, 156-167.[CrossRef] [Google Scholar]
  97. Imai, S., Nishikawa, J. & Takada, K. (1998). Cell-to-cell contact as an efficient mode of Epstein–Barr virus infection of diverse human epithelial cells.Journal of Virology 72, 4371-4378. [Google Scholar]
  98. Immergluck, L. C., Domowicz, M. S., Schwartz, N. B. & Herold, B. C. (1998). Viral and cellular requirements for entry of herpes simplex virus type 1 into primary neuronal cells.Journal of General Virology 79, 549-559. [Google Scholar]
  99. Ito, Y., Tsurudome, M., Yamada, A. & Hishiyama, M. (1987). Induction of cell fusion in Newcastle disease virus-infected L929 cells by anti-L929 cell antisera.Journal of General Virology 68, 1261-1266.[CrossRef] [Google Scholar]
  100. Ito, Y., Komada, H., Kusagawa, S., Tsurudome, M., Matsumara, H., Kawano, M., Ohta, H. & Nishio, M. (1992). Fusion regulation proteins on the cell surface: isolation and characterization of monoclonal antibodies which enhance giant polykarocyte formation in Newcastle disease virus-infected cell lines of human origin.Journal of Virology 66, 5999-6007. [Google Scholar]
  101. Jabbar, M. A. & Nayak, D. P. (1990). Intracellular interaction of human immunodeficiency virus type 1 (ARV-2) envelope glycoprotein gp160 with CD4 blocks the movement and maturation of CD4 to the plasma membrane.Journal of Virology 64, 6297-6304. [Google Scholar]
  102. Jackson, T., Ellard, F. M., Ghazaleh, R. A., Brookes, S. M., Blakemore, W. E., Cortyn, A. H., Stuart, D. I., Newman, J. W. & King, A. M. (1996). Efficient infection of cells in culture by type O foot and mouth disease virus requires binding to cell surface heparan sulfate.Journal of Virology 70, 5282-5287. [Google Scholar]
  103. Johnston, I. C. D., ter Meulen, V., Schneider-Schaulies, J. & Schneider-Schaulies, S. (1999). A recombinant measles vaccine virus expressing wild-type glycoproteins: consequences for viral spread and cell tropism.Journal of Virology 73, 6903-6915. [Google Scholar]
  104. Johnstone, R. W., Loveland, B. E. & McKenzie, I. F. C. (1993). Identification and quantification of complement regulator CD46 on normal human tissues.Immunology 79, 341-347. [Google Scholar]
  105. Kaplan, G., Peters, D. & Racaniello, V. R. (1990). Poliovirus mutants resistant to neutralization with soluble cell receptors.Science 250, 1596-1599.[CrossRef] [Google Scholar]
  106. Kaplan, G., Totsuka, A., Thompson, P., Akatsuka, T., Moritsugu, Y. & Feinstone, S. M. (1996). Identification of a surface protein on African green monkey kidney cells as a receptor for hepatitis A virus.EMBO Journal 15, 4282-4296. [Google Scholar]
  107. Karger, A., Schmidt, J. & Mettenleiter, T. C. (1998). Infectivity of a pseudorabies virus mutant lacking attachment glycoproteins C and D. Journal of Virology 72, 7341-7348. [Google Scholar]
  108. Karp, C. L., Wysocka, M., Wahl, L. M., Ahearn, J. M., Cuomo, P. J., Sherry, B., Trinchieri, G. & Griffin, D. E. (1996). Mechanism of suppression of cell-mediated immunity by measles virus.Science 273, 228-231.[CrossRef] [Google Scholar]
  109. Kasai, K., Sato, Y., Kameya, T., Inoue, H., Yoshimura, H., Kon, S. & Kikuchi, K. (1994). Incidence of latent infection of Epstein–Barr virus in lung cancers – an analysis of EBER1 expression in lung cancers by in situ hybridization.Journal of Pathology 174, 257-265.[CrossRef] [Google Scholar]
  110. Kim, Y. S., Paik, S. R., Kim, H. K., Yeom, B. W., Kim, I. & Lee, D. (1998). Epstein–Barr virus and CD21 expression in gastrointestinal tumors.Pathology Research and Practice 194, 705-711.[CrossRef] [Google Scholar]
  111. Klatzmann, D., Champagne, E., Chamaret, S., Gruest, J., Guetard, D., Hercend, T., Gluckman, J.-C. & Montagnier, L. (1984). T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV.Nature 312, 767-768.[CrossRef] [Google Scholar]
  112. Klenk, H.-D., Volchkov, V. E. & Feldmann, H. (1998). Two strings to the bow of Ebola virus.Nature Medicine 4, 388-389.[CrossRef] [Google Scholar]
  113. Klupp, B. G. & Mettenleiter, T. C. (1999). Glycoprotein gL-independent infectivity of pseudorabies virus is mediated by a gD–gH fusion protein.Journal of Virology 73, 3014-3022. [Google Scholar]
  114. Knight, S. C. & Patterson, S. (1997). Bone marrow-derived dendritic cells, infection with human immunodeficiency virus, and immunopathology.Annual Review of Immunology 15, 593-615.[CrossRef] [Google Scholar]
  115. Köck, J., Theilemann, L., Galle, P. & Schlicht, H.-J. (1996). Hepatitis B virus nucleic acid associated with human peripheral blood mononuclear cells do not originate from replicating virus.Hepatology 23, 405-413.[CrossRef] [Google Scholar]
  116. Koike, S., Horie, H., Ise, I., Okitsu, A., Yoshida, M., Iizuka, N., Takeuchi, K., Tagegami, T. & Nomoto, A. (1990). The poliovirus receptor protein is produced both as membrane-bound and secreted forms.EMBO Journal 9, 3217-3222. [Google Scholar]
  117. Koike, S., Taya, C., Kurata, T., Abe, S., Ise, I., Yonekawa, H. & Nomoto, A. (1991). Transgenic mice susceptible to poliovirus.Proceedings of the National Academy of Sciences, USA 88, 951-955.[CrossRef] [Google Scholar]
  118. Kolb, A. F., Maile, J., Heister, A. & Siddell, S. G. (1996). Characterization of functional domains in the human coronavirus HCV 229E receptor.Journal of General Virology 77, 2515-2521.[CrossRef] [Google Scholar]
  119. Krantic, S., Gimenez, C. & Rabourdin-Combe, C. (1995). Cell-to-cell contact via measles virus haemagglutinin–CD46 interaction triggers CD46 downregulation.Journal of General Virology 76, 2793-2800.[CrossRef] [Google Scholar]
  120. Kuhn, R. J. (1997). Identification and biology of cellular receptors for the coxsackie B viruses group. Current Topics in Microbiology and Immunology 223, 209-226. [Google Scholar]
  121. Kuo, L., Godeke, G.-J., Raamsman, M. J. B., Masters, P. S. & Rottier, P. J. M. (2000). Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier.Journal of Virology 74, 1393-1406.[CrossRef] [Google Scholar]
  122. Kuroki, K., Eng, F., Ishikawa, T., Turck, C., Harada, F. & Ganem, D. (1995). Gp180, a host cell glycoprotein that binds duck hepatitis B virus particles, is encoded by a member of the carboxypeptidase gene family.Journal of Biological Chemistry 270, 15022-15028.[CrossRef] [Google Scholar]
  123. Lachance, C., Arbour, N., Cashman, N. R. & Talbot, P. J. (1998). Involvement of aminopeptidase N (CD13) in infection of human neural cells by human coronavirus 229E.Journal of Virology 72, 6511-6519. [Google Scholar]
  124. Lafferty, W. E., Coombs, R. W., Benedetti, J., Critchlow, C. & Corey, L. (1987). Recurrences after oral and genital herpes simplex virus infection. Influences of site of infection and viral type.New England Journal of Medicine 316, 1444-1449.[CrossRef] [Google Scholar]
  125. Langedijk, J. P. M., Daus, F. J. & van Oirschot, J. T. (1997). Sequence and structure alignment of paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. Journal of Virology 71, 6155-6167. [Google Scholar]
  126. Lawrence, D. M. P., Patterson, C. E., Gales, T. L., D’Orazio, J. L., Vaughn, M. M. & Rall, G. F. (2000). Measles virus spread between neurons requires cell contact but not CD46 expression, syncytium formation, or extracellular virus production.Journal of Virology 74, 1908-1918.[CrossRef] [Google Scholar]
  127. Lecouturier, V., Fayolle, J., Caballero, M., Carabana, J., Celma, M. L., Fernandez-Munoz, R., Wild, T. F. & Buckland, R. (1996). Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains.Journal of Virology 70, 4200-4204. [Google Scholar]
  128. Leon-Monzon, M. E., Illa, I. & Dalakas, M. C. (1995). Expression of poliovirus receptor in human spinal cord and muscle.Annals of the New York Academy of Sciences 753, 48-57. [Google Scholar]
  129. Levy, S., Todd, S. C. & Maecker, H. T. (1998). CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system.Annual Review of Immunology 16, 89-109.[CrossRef] [Google Scholar]
  130. Liao, S. & Racaniello, V. R. (1997). Allele-specific adaptation of poliovirus VP1 B-C loop variants to mutant cell receptors.Journal of Virology 71, 9770-9777. [Google Scholar]
  131. Liebert, U. G., Flanagan, S. G., Löffler, S., Baczko, K., ter Meulen, V. & Rima, B. (1994). Antigenic determinants of measles virus hemagglutinin associated with neurovirulence.Journal of Virology 68, 1486-1493. [Google Scholar]
  132. Libert, F., Cochaux, P., Beckman, G., Samson, M., Aksenova, M., Cao, A., Czeizel, A., Claustres, M., de la Rua, C., Ferrari, M., Ferrec, C., Glover, G., Grinde, B., Guran, S., Kucinskas, V., Lavinha, J., Mercier, B., Ogur, G., Peltonen, L., Rosatelli, C., Schwartz, M., Spitsyn, V., Timar, L., Beckman, L., Parmentier, M. & Vassart, G. (1998). The delta CCR5 mutation conferring protection against HIV-1 in Caucasian populations has a single and recent origin in Northeastern Europe.Human Molecular Genetics 7, 399-406.[CrossRef] [Google Scholar]
  133. Liszewski, M. K., Post, T. W. & Atkinson, J. P. (1991). Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster.Annual Review of Immunology 9, 431-455.[CrossRef] [Google Scholar]
  134. Liu, R., Paxton, W. A., Choe, S., Ceradini, D., Martin, S. R., Horuk, R., Macdonald, M. E., Stuhlmann, H., Koup, R. A. & Landau, N. R. (1996). Homozygous defect in HIV coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection.Cell 86, 367-377.[CrossRef] [Google Scholar]
  135. Löffler, S., Lottspeich, F., Lanza, F., Azorsa, D. O., ter Meulen, V. & Schneider-Schaulies, J. (1997). CD9, a tetraspan transmembrane protein, renders cells susceptible to canine distemper virus.Journal of Virology 71, 42-49. [Google Scholar]
  136. Look, A. T., Ashmun, R. A., Shapiro, L. H. & Peiper, S. C. (1989). Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase N.Journal of Clinical Investigation 83, 1299-1307.[CrossRef] [Google Scholar]
  137. Lowell, C. A., Klickstein, L. B., Carter, R. H., Mitchell, J. A., Fearon, D. T. & Ahearn, J. M. (1989). Mapping the Epstein–Barr virus and C3dg binding sites to a common domain on complement receptor type 2.Journal of Experimental Medicine 170, 1931-1946.[CrossRef] [Google Scholar]
  138. Macadam, A. J., Pollard, S. R., Ferguson, G., Dunn, G., Skuce, R., Almond, J. W. & Minor, P. D. (1993). Genetic bases of attenuation of the Sabin type 2 vaccine strain of poliovirus in primates.Virology 192, 18-26.[CrossRef] [Google Scholar]
  139. McQuaid, S., Campbell, S., Wallace, I. J. C., Kirk, J. & Cosby, S. L. (1998). Measles virus infection and replication in undifferentiated and differentiated human neuronal cells in culture.Journal of Virology 72, 5245-5250. [Google Scholar]
  140. Manchester, M., Gairin, J. E., Patterson, J. B., Alvarez, J., Liszewski, M. K., Eto, D. S., Atkinson, J. P. & Oldstone, M. B. A. (1997). Measles virus recognizes its receptor, CD46, via two distinct binding domains within SCR 1–2.Virology 233, 174-184.[CrossRef] [Google Scholar]
  141. Mebatsion, T., Finke, S., Weiland, F. & Conzelmann, K.-K. (1997). A CXCR4/CD4 pseudotype rhabdovirus that selectively infects HIV-1 envelope protein-expressing cells.Cell 90, 841-847.[CrossRef] [Google Scholar]
  142. Meissner, N. & Koschel, K. (1995). Downregulation of endothelin receptor mRNA synthesis in C6 rat astrocytoma cells by persistent measles virus and canine distemper virus infections.Journal of Virology 69, 5191-5194. [Google Scholar]
  143. Mendelsohn, C. L., Wimmer, E. & Racaniello, V. R. (1989). Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily.Cell 56, 855-862.[CrossRef] [Google Scholar]
  144. Milone, M. C. & Fitzgerald-Bocarsly, P. (1998). The mannose receptor mediates induction of IFN-α in peripheral blood dendritic cells by enveloped RNA and DNA viruses.Journal of Immunology 162, 2391-2399. [Google Scholar]
  145. Mondor, I., Ugolini, S. & Sattentau, Q. J. (1998). Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gp120 dependent and requires cell surface heparans. Journal of Virology 72, 3623-3634. [Google Scholar]
  146. Montgomery, R. I., Warner, M. S., Lum, B. J. & Spear, P. G. (1996). Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family.Cell 87, 427-436.[CrossRef] [Google Scholar]
  147. Mrkic, B., Pavlovic, J., Rulicke, T., Volpe, P., Buchholz, C. J., Hourcade, D., Atkinson, J. P., Aguzzi, A. & Cattaneo, R. (1998). Measles virus spread and pathogenesis in genetically modified mice.Journal of Virology 72, 7420-7427. [Google Scholar]
  148. Nanan, R., Chittka, B., Hadam, M. & Kreth, H. W. (1999). Measles virus infection causes transient depletion of activated T cells from peripheral circulation.Journal of Clinical Virology 12, 201-210.[CrossRef] [Google Scholar]
  149. Naniche, D., Wild, T. F., Rabourdin-Combe, C. & Gerlier, D. (1993). Measles virus haemagglutinin induces down-regulation of gp57/67, a molecule involved in virus binding. Journal of General Virology 74, 1073-1079.[CrossRef] [Google Scholar]
  150. Nedellec, P., Dveksler, G. S., Daniels, E., Turbide, C., Chow, B., Basile, A. A., Holmes, K. V. & Beauchemin, N. (1994). Bgp2, a new member of the carcinoembryonic antigen-related gene family, encodes an alternative receptor for mouse hepatitis viruses.Journal of Virology 68, 4525-4537. [Google Scholar]
  151. Nemerow, G. R. & Cooper, N. R. (1992). CR2 (CD21) mediated infection of B lymphocytes by Epstein–Barr virus.Seminars in Virology 3, 117-124. [Google Scholar]
  152. Nemerow, G. R., Siaw, M. F. E. & Cooper, N. R. (1986). Purification of the Epstein–Barr virus/C3d complement receptor of human B lymphocytes: antigenic and functional properties of the purified protein.Journal of Virology 58, 709-712. [Google Scholar]
  153. Niewiesk, S., Eisenhuth, I., Fooks, A., Clegg, C. S., Schnorr, J.-J., Schneider-Schaulies, S. & ter Meulen, V. (1997a). Measles virus-induced immune suppression in the cotton rat (Sigmodon hispidus) model depends on viral glycoproteins.Journal of Virology 71, 7214-7219. [Google Scholar]
  154. Niewiesk, S., Schneider-Schaulies, J., Ohnimus, H., Jassoy, C., Schneider-Schaulies, S., Diamond, L., Logan, S. & ter Meulen, V. (1997b). CD46 expression does not overcome the intracellular block of measles virus replication in transgenic rats.Journal of Virology 71, 7969-7973. [Google Scholar]
  155. Nomoto, A., Koike, S. & Aoki, J. (1994). Tissue tropism and species specificity of poliovirus infection.Trends in Microbiology 2, 47-51.[CrossRef] [Google Scholar]
  156. Ogata, A., Czub, S., Ogata, S., Cosby, S. L., McQuaid, S., Budka, H., ter Meulen, V. & Schneider-Schaulies, J. (1997). Absence of measles virus receptor (CD46) in lesions of subacute sclerosing panencephalitis brains.Acta Neuropathologica 94, 444-449.[CrossRef] [Google Scholar]
  157. Ohgimoto, S., Tabata, N., Suga, S., Nishio, M., Ohta, H., Tsurudome, M., Komada, H., Kawano, M., Watanabe, N. & Ito, Y. (1995). Molecular characterization of fusion regulatory protein-1 (FRP-1) that induces multinucleated giant cell formation of monocytes and HIV gp160-mediated cell fusion: FRP-1 and 4F2/CD98 are identical molecules.Journal of Immunology 135, 3585-3592. [Google Scholar]
  158. Ohta, H., Tsurudome, M., Matsumura, H., Koga, Y., Morikawa, S., Kawano, M., Kusugawa, S., Komada, H., Nishio, M. & Ito, Y. (1994). Molecular and biological characterization of fusion regulatory proteins (FRPs): anti-FRP mAb induced HIV-mediated cell fusion via an integrin system.EMBO Journal 13, 2044-2055. [Google Scholar]
  159. Okamoto, K., Tsurudome, M., Ohgimoto, S., Kawano, M., Nishio, M., Komada, H., Ito, M., Sakakura, Y. & Ito, Y. (1997). An anti-fusion regulatory protein-1 monoclonal antibody suppresses human parainfluenza virus type 2-induced cell fusion.Journal of General Virology 78, 83-89. [Google Scholar]
  160. Oldstone, M. B. A., Lewicki, H., Thomas, D., Tishon, A., Dales, S., Patterson, J., Manchester, M., Homann, D., Naniche, D. & Holz, A. (1999). Measles virus infection in a transgenic model: virus-induced immunosuppression and central nervous system disease.Cell 98, 629-640.[CrossRef] [Google Scholar]
  161. Olsen, J., Cowell, G. M., Konigshofer, E., Danielsen, E. M., Moller, J., Laustsen, L., Hansen, O. C., Welinder, G. K., Engberg, J., Hunziker, W., Spiess, M., Sjöström, H. & Noren, O. (1988). Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA.FEBS Letters 238, 307-314.[CrossRef] [Google Scholar]
  162. Pileri, P., Uematsu, Y., Campagnoli, S., Galli, G., Falugi, F., Petracca, R., Weiner, A. J., Houghton, M., Rosa, D., Grandi, G. & Abrignani, S. (1998). Binding of hepatitis C virus to CD81.Science 282, 938-941.[CrossRef] [Google Scholar]
  163. Putnak, J. R., Niranjan, K.-T. & Innis, B. L. (1997). A putative cellular receptor for dengue viruses.Nature Medicine 3, 828-829.[CrossRef] [Google Scholar]
  164. Racaniello, V. R. (1996). Early events in poliovirus infection: virus–receptor interactions.Proceedings of the National Academy of Sciences, USA 93, 11378-11381.[CrossRef] [Google Scholar]
  165. Radecke, F., Spielhofer, P., Schneider, H., Kaelin, K., Huber, M., Dötsch, C., Christiansen, G. & Billeter, M. A. (1995). Rescue of measles viruses from cloned DNA.EMBO Journal 14, 5773-5784. [Google Scholar]
  166. Raja, N. U., Vincent, M. J. & Jabbar, M. A. (1994). Vpu-mediated proteolysis of gp160/CD4 chimeric envelope glycoproteins in the endoplasmic reticulum: requirement of both the anchor and cytoplasmic domains of CD4.Virology 204, 357-366.[CrossRef] [Google Scholar]
  167. Rall, G. F., Manchester, M., Daniels, L. R., Callahan, E. M., Belman, A. R. & Oldstone, M. B. A. (1997). A transgenic mouse model for measles virus infection of the brain. Proceedings of the National Academy of Sciences, USA 94, 4659-4663.[CrossRef] [Google Scholar]
  168. Ren, R., Costantini, F., Gorgacz, E. J., Lee, J. J. & Racaniello, V. R. (1990). Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis.Cell 63, 353-362.[CrossRef] [Google Scholar]
  169. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. (1995). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution.Nature 375, 291-298.[CrossRef] [Google Scholar]
  170. Roelvink, P. W., Lizonova, A., Lee, J. G. M., Li, Y., Bergelson, J. M., Finberg, R. W., Brough, D. E., Kovesdi, I. & Wickham, T. J. (1998). The coxsackievirus–adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F.Journal of Virology 72, 7909-7915. [Google Scholar]
  171. Roelvink, P. W., Lee, G. M., Einfeld, D. A., Kovesdi, I. & Wickham, T. J. (1999). Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae.Science 286, 1568-1571.[CrossRef] [Google Scholar]
  172. Ruoslahti, E. & Reed, J. (1999). New way to activate caspases.Nature 397, 479-480. [Google Scholar]
  173. Samson, M., Libert, F., Doranz, B. J., Rucker, J., Liesnard, C., Farber, C. M., Saragosti, S., Lapoumeroulie, C., Cognaux, J., Forceille, C., Muyldermans, G., Verhofstede, C., Burtonboy, G., Georges, M., Imai, T., Rana, S., Yi, Y. J., Smyth, R. J., Collman, R. G., Doms, R. W., Vassart, G. & Parmentier, M. (1996). Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene.Nature 382, 722-725.[CrossRef] [Google Scholar]
  174. Schlender, J., Schnorr, J.-J., Spielhofer, P., Cathomen, T., Cattaneo, R., Billeter, M. A., ter Meulen, V. & Schneider-Schaulies, S. (1996). Interaction of measles virus glycoproteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro.Proceedings of the National Academy of Sciences, USA 93, 13194-13199.[CrossRef] [Google Scholar]
  175. Schmid, E., Zurbriggen, A., Gassen, U., Rima, B. K., ter Meulen, V. & Schneider-Schaulies, J. (2000). Antibodies to CD9, a tetraspan transmembrane protein, inhibit canine distemper virus (CDV)-induced cell-cell fusion, but not virus-cell fusion. Submitted for publication.
  176. Schneider-Schaulies, S. & ter Meulen, V. (1999). Measles virus induced immunosuppression.Nova Acta Leopoldina 307, 185-197. [Google Scholar]
  177. Schneider-Schaulies, J., Schnorr, J.-J., Brinckmann, U., Dunster, L. M., Baczko, K., Schneider-Schaulies, S. & ter Meulen, V. (1995a). Receptor usage and differential downregulation of CD46 by measles virus wild type and vaccine strains.Proceedings of the National Academy of Sciences, USA 92, 3943-3947.[CrossRef] [Google Scholar]
  178. Schneider-Schaulies, J., Dunster, L. M., Kobune, F., Rima, B. K. & ter Meulen, V. (1995b). Differential downregulation of CD46 by measles virus strains. Journal of Virology 69, 7257-7259. [Google Scholar]
  179. Schneider-Schaulies, J., Schnorr, J.-J., Schlender, J., Dunster, L. M., Schneider-Schaulies, S. & ter Meulen, V. (1996). Receptor (CD46) modulation and complement-mediated lysis of uninfected cells after contact with measles virus-infected cells. Journal of Virology 70, 255-263. [Google Scholar]
  180. Schneider-Schaulies, J., Niewiesk, S., Schneider-Schaulies, S. & ter Meulen, V. (1999). Measles virus in the CNS: the role of viral and host factors for the establishment and maintenance of a persistent infection. Journal of Neurovirology 5, 613-622.[CrossRef] [Google Scholar]
  181. Schnell, M. J., Johnson, J. E., Buonocore, L. & Rose, J. K. (1997). Construction of a novel virus that targets HIV-1-infected cells and controls HIV-1 infection. Cell 90, 849-857.[CrossRef] [Google Scholar]
  182. Schnorr, J.-J., Dunster, L. M., Nanan, R., Schneider-Schaulies, J., Schneider-Schaulies, S. & ter Meulen, V. (1995). Measles virus-induced down-regulation of CD46 is associated with enhanced sensitivity to complement-mediated lysis of infected cells. European Journal of Immunology 25, 976-984.[CrossRef] [Google Scholar]
  183. Shafren, D. R. (1998). Viral cell entry induced by cross-linked decay-accelerating factor. Journal of Virology 72, 9407-9412. [Google Scholar]
  184. Shafren, D. R., Bates, R. C., Agrez, M. V., Herd, R. L., Burne, G. F. & Barry, R. D. (1995). Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment. Journal of Virology 69, 3873-3877. [Google Scholar]
  185. Shieh, M. T., WuDunn, D., Montgomery, R. I., Esko, J. D. & Spear, P. G. (1992). Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. Journal of Cell Biology 116, 1273-1281.[CrossRef] [Google Scholar]
  186. Shiroki, K., Ishii, T., Aoki, T., Ota, Y., Yang, W. X., Komatsu, T., Ami, Y., Arita, M., Abe, S., Hashizume, S. & Nomoto, A. (1997). Host range phenotype induced in the internal ribosomal entry site of poliovirus RNA. Journal of Virology 71, 1-8. [Google Scholar]
  187. Shukla, D., Liu, J., Blaiklock, P., Shworak, N. W., Bai, X., Esko, J. D., Cohen, G. H., Eisenberg, R. J., Rosenberg, R. D. & Spear, P. G. (1999). A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99, 13-22.[CrossRef] [Google Scholar]
  188. Siddell, S. G. (1995). The Coronaviridae: an introduction. In The Coronaviridae, pp. 1-10. Edited by S. G. Siddell. New York: Plenum Press.
  189. Skehel, J. J., Steinhauer, D., Wharton, S. A., Bullough, P. A., Hughson, F. M., Watowich, S. J. & Wiley, D. C. (1994). Receptor binding and membrane fusion by influenza hemagglutinin. In Cellular Receptors for Animal Viruses, pp. 187-193. Edited by E. Wimmer. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press.
  190. Spear, P. G. (1993). Entry of alphaherpesviruses into cells.Seminars in Virology 4, 167-180.[CrossRef] [Google Scholar]
  191. Spetz, A. L., Patterson, B. K., Lore, K., Andersson, J. & Holmgren, L. (1999). Functional gene transfer of HIV DNA by an HIV receptor-independent mechanism. Journal of Immunology 163, 736-742. [Google Scholar]
  192. Steinhauer, D. A., Sauter, N. K., Skehel, J. J. & Wiley, D. C. (1992). Receptor binding and cell entry by influenza viruses. Seminars in Virology 3, 91-100. [Google Scholar]
  193. Stephens, J. C., Reich, D. E., Goldstein, D. B., Shin, H. D., Smith, M. W., Carrington, M., Winkler, C., Huttley, G. A., Allikmets, R., Schriml, L., Gerrard, B., Malasky, M., Ramos, M. D., Morlot, S., Tzetis, M., Oddoux, C., di Giovine, F. S., Nasiolas, G., Chandler, D., Aseev, M., Hanson, M., Kalaydjieva, L., Glavac, L., Gasparini, P., Kanavakis, E., Claustres, M., Kambouris, M., Ostrer, H., Duff, G., Baranov, V., Sibul, H., Metspalu, A., Goldman, D., Martin, N., Duffy, D., Schmidtke, J., Estivil, X., O’Brien, S. J. & Dean, M. (1998). Dating the origin of the CCR5-delta 32 AIDS-resistance allele by coalescence of haplotypes. American Journal of Human Genetics 62, 1507-1515.[CrossRef] [Google Scholar]
  194. Stevenson, S. C., Rollence, M., Marshall-Neef, J. & McLelland, A. (1997). Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein. Journal of Virology 71, 4782-4790. [Google Scholar]
  195. Stiasny, K., Allison, S. L., Marchler-Bauer, A., Kunz, C. & Heinz, F. (1996). Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. Journal of Virology 70, 8142-8147. [Google Scholar]
  196. Sullivan, N., Sun, Y., Li, J., Hofmann, W. & Sodroski, J. (1995). Replicative function and neutralization sensitivity of envelope glycoproteins from primary and T-cell line-passaged human immunodeficiency virus type 1 isolates. Journal of Virology 69, 4413-4420. [Google Scholar]
  197. Summerford, C. & Samulski, R. J. (1998). Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. Journal of Virology 72, 1438-1445. [Google Scholar]
  198. Tabata, N., Ido, M., Suga, S., Ohgimoto, S., Tsurudome, M., Kawano, M., Nishio, M., Watanabe, N., Okamoto, K., Komada, H., Sakurai, M. & Ito, Y. (1998). Protein tyrosine kinase activation provides an early and obligatory signal in anti-FRP-1/CD98/4F2 monoclonal antibody induced cell fusion mediated by HIV gp160. Medical Microbiology and Immunology 186, 115-123. [Google Scholar]
  199. Takahashi, K., Nakanishi, H., Miyahara, M., Mandai, K., Satoh, K., Satoh, A., Nishioka, H., Aoki, J., Nomoto, A., Mizoguchi, A. & Takai, Y. (1999). Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with afadin, a PDZ domain-containing protein. Journal of Cell Biology 145, 539-549.[CrossRef] [Google Scholar]
  200. Tanaka, K., Xie, M. & Yanagi, Y. (1998). The hemagglutinin of recent measles virus isolates induces cell fusion in a marmoset cell line, but not in other CD46-positive human and monkey cell lines, when expressed together with the F protein. Archives of Virology 143, 213-225.[CrossRef] [Google Scholar]
  201. Tanner, J., Weis, J., Fearon, D., Whang, Y. & Kieff, E. (1987). Epstein–Barr virus gp350/220 binding to B lymphocytes C3d receptor mediates adsorption, capping, and endocytosis. Cell 50, 203-213.[CrossRef] [Google Scholar]
  202. Tedder, T. F., Goldmacher, V. S., Lambert, J. M. & Schlossman, S. F. (1986). Epstein–Barr virus binding induces internalization of the C3d receptors: a novel immunotoxin delivery system. Journal of Immunology 137, 1387-1391. [Google Scholar]
  203. Teng, M. N., Borrow, P., Oldstone, M. B. A. & de la Torre, J. C. (1996). A single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus associated with the ability to cause growth hormone deficiency syndrome. Journal of Virology 70, 8438-8443. [Google Scholar]
  204. Thompson, P., Lu, J. & Kaplan, G. G. (1998). The cys-rich region of the hepatitis A virus cellular receptor 1 (HAVcr-1) is required for binding of hepatitis A virus and protective monoclonal antibody 190/4. Journal of Virology 72, 3751-3761. [Google Scholar]
  205. Tong, S., Li, J. & Wands, J. R. (1999). Carboxypeptidase D is an avian hepatitis B virus receptor. Journal of Virology 73, 8696-8702. [Google Scholar]
  206. Tresnan, D. B. & Holmes, K. V. (1998). Feline aminopeptidase N is a receptor for all group I coronaviruses. Advances in Experimental Medicine and Biology 440, 69-75. [Google Scholar]
  207. Triantafilou, M., Triantafilou, K., Wilson, K. M., Takada, Y., Fernandez, N. & Stanway, G. (1999). Involvement of β2-microglobulin and integrin αvβ3 molecules in the coxsackievirus A9 infectious cycle. Journal of General Virology 80, 2591-2600. [Google Scholar]
  208. Tufaro, F. (1997). Virus entry: two receptors are better than one. Trends in Microbiology 5, 257-258.[CrossRef] [Google Scholar]
  209. Urban, S., Breiner, K. M., Fehler, F., Klingmüller, U. & Schaller, H. (1998). Avian hepatitis B virus infection is initiated by the interaction of a distinct pre-S-subdomain with the cellular receptor gp180. Journal of Virology 72, 8089-8097. [Google Scholar]
  210. Urbanska, E. M., Chambers, B. J., Ljunggren, H. G., Norrby, E. & Kristensson, K. (1997). Spread of measles virus through axonal pathways into limbic structures in the brain of TAP –/– mice.Journal of Medical Virology 52, 362-369.[CrossRef] [Google Scholar]
  211. Wadell, G. (1990). Adenoviruses. In Principles and Practice of Clinical Virology, pp. 267-287. Edited by A. J. Zuckerman, J. E. Banatvala & J. R. Pattison. Chichester, UK: John Wiley & Sons.
  212. Ward, T., Pipkin, P. A., Clarkson, N. A., Stone, D. M., Minor, P. D. & Almond, J. W. (1994). Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO Journal 13, 5070-5074. [Google Scholar]
  213. Warner, M. S., Geraghty, R. J., Martinez, W. M., Montgomery, R. I., Whitbeck, J. C., Xu, R., Eisenberg, R. J., Cohen, G. H. & Spear, P. G. (1998). A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus. Virology 246, 179-189.[CrossRef] [Google Scholar]
  214. Weidmann, A., Maisner, A., Garten, W., Seufert, M., ter Meulen, V. & Schneider-Schaulies, S. (2000). Proteolytic cleavage of the fusion protein but not membrane fusion is required for measles virus-induced immunosuppression in vitro. Journal of Virology 74, 1985-1993.[CrossRef] [Google Scholar]
  215. White, J. M. (1994). Fusion of influenza virus in endosomes: role of the hemagglutinin. In Cellular Receptors for Animal Viruses, pp. 281-321. Edited by E. Wimmer. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press.
  216. Wickham, T. J., Mathias, P., Cheresh, D. A. & Nemerow, G. R. (1993). Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell 73, 309-319.[CrossRef] [Google Scholar]
  217. Willett, B., Hosie, M., Shaw, A. & Neil, J. (1997). Inhibition of feline immunodeficiency virus infection by CD9 antibodies operates after viral entry and is independent of virus tropism. Journal of General Virology 78, 611-618. [Google Scholar]
  218. Williams, R. K., Jiang, G. S., Snyder, S. W., Frana, M. F. & Holmes, K. V. (1990). Purification of the 110-kilodalton glycoprotein receptor for mouse hepatitis virus (MHV)-A59 from mouse liver and identification of a non-functional, homologous protein in MHV-resistant SJL/J mice. Journal of Virology 64, 3817-3823. [Google Scholar]
  219. Williams, R. K., Jiang, G. S. & Holmes, K. V. (1991). Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proceedings of the National Academy of Sciences, USA 88, 5533-5536.[CrossRef] [Google Scholar]
  220. Wimmer, E., Harber, J. J., Bibb, J. A., Gromeier, M., Lu, H.-H. & Bernhardt, G. (1994). Poliovirus receptors. In Cellular Receptors for Animal Viruses, pp. 101-128. Edited by E. Wimmer. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  221. Wong, T. C., Yant, S., Harder, B. J., Korte-Safarty, J. & Hirano, A. (1997). The cytoplasmic domains of complement regulatory protein CD46 interact with multiple kinases in macrophages. Journal of Leukocyte Biology 62, 892-900. [Google Scholar]
  222. Yeager, C. L., Ashmun, R. A., Williams, R. K., Cardellichio, C. B., Shapiro, L. H., Look, A. T. & Holmes, K. V. (1992). Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357, 420-422.[CrossRef] [Google Scholar]
  223. Yokomori, K. & Kai, M. L. (1992). Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. Journal of Virology 66, 6194-6199. [Google Scholar]
  224. Yoshiyama, H., Imai, S., Shimizu, N. & Takada, K. (1997). Epstein–Barr virus infection of human gastric carcinoma cells: implication of the existence of a new virus receptor different from CD21. Journal of Virology 71, 5688-5691. [Google Scholar]
  225. Zelus, B. D., Wessner, D. R., Williams, R. K., Pensiero, M. N., Phibbs, F. T., DeSouza, M., Dveksler, G. S. & Holmes, K. V. (1998). Purified, soluble recombinant mouse hepatitis virus receptor, Bgp1b, and Bgp2 murine coronavirus receptors differ in mouse hepatitis virus binding and neutralization activities. Journal of Virology 72, 7237-7244. [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error