1887

Abstract

A number of echoviruses use decay accelerating factor (DAF) as a cellular receptor or attachment protein for cell infection. Binding of echovirus 7 to DAF at the cell surface, but not to soluble DAF in solution, triggers the formation of virus particles exhibiting an altered sedimentation coefficient (‘A’ particles) which are considered indicative of the particle uncoating process. We have previously demonstrated that antibodies to β-microglobulin block cell infection at a stage prior to ‘A’ particle formation and suggested that this reflects the involvement of β-microglobulin (or the associated MHC-I) in a virus–receptor complex that forms at the cell surface. We demonstrate here that antiserum to CD59 specifically blocks infection of rhabdomyosarcoma cells by a range of echoviruses, including viruses that bind DAF (e.g. echovirus 7) and those that use currently unidentified receptors other than DAF. The block occurs prior to ‘A’ particle formation and is cell-type specific. The potential role of CD59 as an active member, or passive participant, in the virus–receptor complex is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-5-1393
2000-05-01
2024-11-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/5/0811393a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-5-1393&mimeType=html&fmt=ahah

References

  1. Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M. & Berger, E. A. (1996). CC CKR 5 – a RANTES, MIP-1-alpha, MIP-1-beta receptor as a fusion cofactor for macrophage-tropic HIV-1.Science 272, 1955-1958.[CrossRef] [Google Scholar]
  2. Bai, M., Campisi, L. & Freimuth, P. (1994). Vitronectin receptor antibodies inhibit infection of HeLa and A549 cells by adenovirus type 12 but not by adenovirus type 2.Journal of Virology 68, 5925-5932. [Google Scholar]
  3. Bergelson, J. M., Chan, M., Solomon, K. R., St John, N. F., Lin, H. & Finberg, R. W. (1994). Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses.Proceedings of the National Academy of Sciences, USA 91, 6245-6249.[CrossRef] [Google Scholar]
  4. Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., Horwitz, M. S., Crowell, R. L. & Finberg, R. W. (1997). Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5.Science 275, 1320-1323.[CrossRef] [Google Scholar]
  5. Bodian, D. L., Davis, S. J., Morgan, B. P. & Rushmere, N. K. (1997). Mutational analysis of the active site and antibody epitopes of the complement-inhibitory glycoprotein, CD59.Journal of Experimental Medicine 185, 507-516.[CrossRef] [Google Scholar]
  6. Brown, D. & London, E. (1998). Function of lipid rafts in biological membranes.Annual Review of Cell and Developmental Biology 14, 111-136.[CrossRef] [Google Scholar]
  7. Cerny, J., Stockinger, H. & Horejsi, V. (1996). Noncovalent associations of T lymphocyte surface proteins.European Journal of Immunology 26, 2335-2343.[CrossRef] [Google Scholar]
  8. Davitz, M. A., Low, M. G. & Nussenzweig, V. (1986). Release of decay-accelerating factor (DAF) from the cell-membrane by phosphatidylinositol-specific phospholipase-c (PIPLC) – selective modification of a complement regulatory protein.Journal of Experimental Medicine 163, 1150-1161.[CrossRef] [Google Scholar]
  9. Deng, H. K., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., Di Marzio, P., Marmon, S., Sutton, R. E., Hill, C. M., Davis, C. B., Peiper, S. C., Schall, T. J., Littman, D. R. & Landau, N. R. (1996). Identification of a major co-receptor for primary isolates of HIV-1.Nature 381, 661-666.[CrossRef] [Google Scholar]
  10. Evans, D. J. (1997). Picornavirus receptors, tropism and pathogenesis. In Molecular Aspects of Host–Pathogen Interactions, pp. 23-43. Edited by M. A. McCrae, J. R. Saunders, C. J. Smyth & N. D. Stow. Cambridge: Cambridge University Press.
  11. Evans, D. & Almond, J. (1998). Cell receptors for picornaviruses as determinants of cell tropism and pathogenesis.Trends in Microbiology 6, 198-202.[CrossRef] [Google Scholar]
  12. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. (1996). HIV-1 entry cofactor – functional cDNA cloning of a 7-transmembrane, G-protein-coupled receptor.Science 272, 872-877.[CrossRef] [Google Scholar]
  13. Fricks, C. E. & Hogle, J. M. (1990). Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding.Journal of Virology 64, 1934-1945. [Google Scholar]
  14. Greve, J. M., Forte, C. P., Marlor, C. W., Meyer, A. M., Hoover-Litty, H., Wunderlich, D. & McClelland, A. (1991). Mechanisms of receptor-mediated rhinovirus neutralization defined by two soluble forms of ICAM-1.Journal of Virology 65, 6015-6023. [Google Scholar]
  15. Holland, J. J. (1962). Irreversible eclipse of poliovirus by HeLa cells.Virology 16, 163-176.[CrossRef] [Google Scholar]
  16. Hoover-Litty, H. & Greve, J. M. (1993). Formation of rhinovirus-soluble ICAM-1 complexes and conformational changes in the virion.Journal of Virology 67, 390-397. [Google Scholar]
  17. Kaplan, G., Freistadt, M. S. & Racaniello, V. R. (1990). Neutralization of poliovirus by cell receptors expressed in insect cells.Journal of Virology 64, 4697-4702. [Google Scholar]
  18. Karnauchow, T. M., Tolson, D. L., Harrison, B. A., Altman, E., Lublin, D. M. & Dimock, K. (1996). The HeLa cell receptor for enterovirus 70 is decay accelerating factor (CD55).Journal of Virology 70, 5143-5152. [Google Scholar]
  19. Lisanti, M. P. & Rodriguez-Boulan, E. (1991). Polarized sorting of GPI-linked proteins in epithelia and membrane microdomains.Cell Biology International Reports 15, 1023-1049.[CrossRef] [Google Scholar]
  20. Mayor, S., Rothberg, K. G. & Maxfield, F. R. (1994). Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking.Science 264, 1948-1951.[CrossRef] [Google Scholar]
  21. Medof, M. E., Kinoshita, T. & Nussenzweig, V. (1984). Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes.Journal of Experimental Medicine 160, 1558-1578.[CrossRef] [Google Scholar]
  22. Mendelsohn, C. L., Wimmer, E. & Racaniello, V. R. (1989). Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily.Cell 56, 855-865.[CrossRef] [Google Scholar]
  23. Moran, P., Beasley, H., Gorrell, A., Martin, E., Gribling, P., Fuchs, H., Gillett, N., Burton, L. E. & Caras, I. W. (1992). Human recombinant soluble decay accelerating factor inhibits complement activation in vitro and in vivo.Journal of Immunology 149, 1736-1743. [Google Scholar]
  24. Morgan, B. P. & Meri, S. (1994). Membrane proteins that protect against complement lysis.Springer Seminars in Immunopathology 15, 369-396.[CrossRef] [Google Scholar]
  25. Powell, R. M., Ward, T., Evans, D. J. & Almond, J. W. (1997). Interaction between echovirus 7 and its receptor, decay-accelerating factor (CD55): evidence for a secondary cellular factor in A-particle formation.Journal of Virology 71, 9306-9312. [Google Scholar]
  26. Powell, R. M., Schmitt, V., Ward, T., Goodfellow, I., Evans, D. J. & Almond, J. W. (1998). Characterization of echoviruses that bind decay accelerating factor (CD55): evidence that some haemagglutinating strains use more than one cellular receptor.Journal of General Virology 79, 1707-1713. [Google Scholar]
  27. Schnitzer, J. E., McIntosh, D. P., Dvorak, A. M., Liu, J. & Oh, P. (1995). Separation of caveolae from associated microdomains of GPI-anchored proteins [see comments].Science 269, 1435-1439.[CrossRef] [Google Scholar]
  28. Shafren, D. R., Bates, R. C., Agrez, M. V., Herd, R. L., Burns, G. F. & Barry, R. D. (1995). Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment.Journal of Virology 69, 3873-3877. [Google Scholar]
  29. Shafren, D. R., Dorahy, D. J., Ingham, R. A., Burns, G. F. & Barry, R. D. (1997a). Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry.Journal of Virology 71, 4736-4743. [Google Scholar]
  30. Shafren, D. R., Williams, D. T. & Barry, R. D. (1997b). A decay-accelerating factor-binding strain of coxsackievirus B3 requires the coxsackievirus–adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells.Journal of Virology 71, 9844-9848. [Google Scholar]
  31. Simons, K. & Ikonen, E. (1997). Functional rafts in cell membranes.Nature 387, 569-572.[CrossRef] [Google Scholar]
  32. Stang, E., Kartenbeck, J. & Parton, R. G. (1997). Major histocompatibility complex class I molecules mediate association of SV40 with caveolae.Molecular Biology of the Cell 8, 47-57.[CrossRef] [Google Scholar]
  33. Ward, T., Pipkin, P. A., Clarkson, N. A., Stone, D. M., Minor, P. D. & Almond, J. W. (1994). Decay accelerating factor (CD55) identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method.EMBO Journal 13, 5070-5074. [Google Scholar]
  34. Ward, T., Powell, R. M., Pipkin, P. A., Evans, D. J., Minor, P. D. & Almond, J. W. (1998). Role for β2-microglobulin in echovirus infection of rhabdomyosarcoma cells.Journal of Virology 72, 5360-5365. [Google Scholar]
  35. Wu, M., Fan, J., Gunning, W. & Ratnam, M. (1997). Clustering of GPI-anchored folate receptor independent of both cross-linking and association with caveolin.Journal of Membrane Biology 159, 137-147.[CrossRef] [Google Scholar]
  36. Yafal, A. G., Kaplan, G., Racaniello, V. R. & Hogle, J. M. (1993). Characterization of poliovirus conformational alteration mediated by soluble cell receptors.Virology 197, 501-505.[CrossRef] [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-81-5-1393
Loading
/content/journal/jgv/10.1099/0022-1317-81-5-1393
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error