1887

Abstract

Genetic relationships between 35 clinical isolates of coxsackievirus A9 (CAV9), collected during the last five decades from different geographical regions, were investigated by partial sequencing. Analysis of a 150 nucleotide sequence at the VP1/2A junction region identified 12 CAV9 genotypes. While most of the strains within each genotype showed geographical clustering, the analysis also provided evidence for long-range importation of virus strains. Phylogenetic analysis of a longer region around the VP1/2A junction (approximately 390 nucleotides) revealed that the designated genotypes actually represented phylogenetic lineages. The phylogenetic grouping pattern of the isolates in the analysis of the VP4/VP2 region was similar to that obtained in the VP1/2A region whereas analysis of the 3D region indicated a strikingly different grouping, which suggests that recombination events may occur in the region encoding the nonstructural proteins. Analysis of the deduced amino acid sequences of the VP1 polypeptide demonstrated that the RGD (arginine-glycine-aspartic acid) motif, implicated in the interaction of the virus with integrin, was fully conserved among the isolates.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-81-5-1361
2000-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/81/5/0811361a.html?itemId=/content/journal/jgv/10.1099/0022-1317-81-5-1361&mimeType=html&fmt=ahah

References

  1. Acharya, R., Fry, E., Stuart, D., Fox, G., Rowlands, D. & Brown, F. (1989). The three-dimensional structure of foot-and-mouth disease virus at 2·9 Å resolution.Nature 337, 709-716.[CrossRef] [Google Scholar]
  2. Bazan, J. F. & Fletterick, R. J. (1988). Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications.Proceedings of the National Academy of Sciences, USA 85, 7872-7876.[CrossRef] [Google Scholar]
  3. Berinstein, A., Roivainen, M., Hovi, T., Mason, P. W. & Baxt, B. (1995). Antibodies to the vitronectin receptor (integrin αvβ3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells.Journal of Virology 69, 2664-2666. [Google Scholar]
  4. Brown, B. A., Oberste, M. S., Alexander, J. P.Jr, Kennett, M. L. & Pallansch, M. A. (1999). Molecular epidemiology and evolution of enterovirus 71 strains isolated from 1970 to 1998.Journal of Virology 73, 9969-9975. [Google Scholar]
  5. Cammack, N., Phillips, A., Dunn, G., Patel, V. & Minor, P. D. (1988). Intertypic genomic rearrangements of poliovirus strains in vaccinees.Virology 167, 507-514.[CrossRef] [Google Scholar]
  6. Chang, K. H., Auvinen, P., Hyypiä, T. & Stanway, G. (1989). The nucleotide sequence of coxsackievirus A9; implications for receptor binding and enterovirus classification.Journal of General Virology 70, 3269-3280.[CrossRef] [Google Scholar]
  7. Chang, K. H., Day, C., Walker, J., Hyypiä, T. & Stanway, G. (1992). The nucleotide sequences of wild-type coxsackievirus A9 strains imply that an RGD motif in VP1 is functionally significant.Journal of General Virology 73, 621-626.[CrossRef] [Google Scholar]
  8. Chezzi, C., Blackburn, N. K. & Schoub, B. D. (1997). Molecular epidemiology of type 1 polioviruses from Africa.Journal of General Virology 78, 1017-1024. [Google Scholar]
  9. Devereux, J., Haeberli, P. & Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX.Nucleic Acids Research 12, 387-395.[CrossRef] [Google Scholar]
  10. Drake, J. W. (1993). Rates of spontaneous mutation among RNA viruses.Proceedings of the National Academy of Sciences, USA 90, 4171-4175.[CrossRef] [Google Scholar]
  11. Fiore, L., Genovese, D., Diamanti, E., Catone, S., Ridolfi, B., Ibrahimi, B., Konomi, R., van der Avoort, H. G. A. M., Hovi, T., Crainic, R., Simeoni, P. & Amato, C. (1998). Antigenic and molecular characterization of wild type 1 poliovirus causing outbreaks of poliomyelitis in Albania and neighboring countries in 1996.Journal of Clinical Microbiology 36, 1912-1918. [Google Scholar]
  12. Fox, G., Parry, N. R., Barnett, P. V., McGinn, B., Rowlands, D. J. & Brown, F. (1989). The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid).Journal of General Virology 70, 625-637.[CrossRef] [Google Scholar]
  13. Furione, M., Guillot, S., Otelea, D., Balanant, J., Candrea, A. & Crainic, R. (1993). Polioviruses with natural recombinant genomes isolated from vaccine-associated paralytic poliomyelitis.Virology 196, 199-208.[CrossRef] [Google Scholar]
  14. Gjøen, K., Bruu, A.-L. & Ørstavik, I. (1996). Intratypic genome variability of echovirus type 30 in part of the VP4/VP2 coding region.Archives of Virology 141, 901-908.[CrossRef] [Google Scholar]
  15. Hovi, T., Stenvik, M. & Rosenlew, M. (1996). Relative abundance of enterovirus serotypes in sewage differs from that in patients: clinical and epidemiological implications.Epidemiology and Infection 116, 91-97.[CrossRef] [Google Scholar]
  16. Hughes, M. S., Hoey, E. M. & Coyle, P. V. (1993). A nucleotide sequence comparison of coxsackievirus B4 isolates from aquatic samples and clinical specimens.Epidemiology and Infection 110, 389-398.[CrossRef] [Google Scholar]
  17. Hughes, P. J., Horsnell, C., Hyypiä, T. & Stanway, G. (1995). The coxsackievirus A9 RGD motif is not essential for virus viability.Journal of Virology 69, 8035-8040. [Google Scholar]
  18. Huovilainen, A., Mulders, M. N., Agboatwalla, M., Pöyry, T., Stenvik, M. & Hovi, T. (1995). Genetic divergence of poliovirus strains isolated in the Karachi region of Pakistan.Journal of General Virology 76, 3079-3088.[CrossRef] [Google Scholar]
  19. Huttunen, P., Santti, J., Pulli, T. & Hyypiä, T. (1996). The major echovirus group is genetically coherent and related to coxsackie B viruses.Journal of General Virology 77, 715-725.[CrossRef] [Google Scholar]
  20. Hyypiä, T., Hovi, T., Knowles, N. J. & Stanway, G. (1997). Classification of enteroviruses based on molecular and biological properties.Journal of General Virology 78, 1-11. [Google Scholar]
  21. Ishiko, H., Takeda, N., Miyamura, K., Kato, N., Tanimura, M., Lin, K.-H., Yin-Murphy, M., Tam, J. S., Mu, G.-F. & Yamazaki, S. (1992). Phylogenetic analysis of a coxsackievirus A24 variant: the most recent worldwide pandemic was caused by progenies of a virus prevalent around 1981.Virology 187, 748-759.[CrossRef] [Google Scholar]
  22. Jablonski, S. A., Luo, M. & Morrow, C. D. (1991). Enzymatic activity of poliovirus RNA polymerase mutants with single amino acid changes in the conserved YGDD amino acid motif.Journal of Virology 65, 4565-4572. [Google Scholar]
  23. Kamer, G. & Argos, P. (1984). Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses.Nucleic Acids Research 12, 7269-7282.[CrossRef] [Google Scholar]
  24. Kew, O. M., Mulders, M. N., Lipskaya, G. Y., da Silva, E. E. & Pallansch, M. A. (1995). Molecular epidemiology of polioviruses.Seminars in Virology 6, 401-414.[CrossRef] [Google Scholar]
  25. King, A. M. Q., Brown, F., Christian, P., Hovi, T., Hyypiä, T., Knowles, N. J., Lemon, S. M., Minor, P. D., Palmenberg, A. C., Skern, T. & Stanway, G. (1999). Picornaviridae. In Virus Taxonomy: Classification and Nomenclature of Viruses. Seventh Report of the International Committee on Taxonomy of Viruses, pp. 996. Edited by M. H. V. Van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carsten, M. K. Estes, S. M. Lemon, J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle & R. B. Wickner. San Diego: Academic Press.
  26. Kirkegaard, K. & Baltimore, D. (1986). The mechanism of RNA recombination in poliovirus.Cell 47, 433-443.[CrossRef] [Google Scholar]
  27. Kopecka, H., Brown, B. & Pallansch, M. (1995). Genotypic variation in coxsackievirus B5 isolates from three different outbreaks in the United States.Virus Research 38, 125-136.[CrossRef] [Google Scholar]
  28. Morvan, J. M., Chezzi, C., Gouandjika, I., Reimerink, J. H. J. & van der Avoort, H. G. A. M. (1997). The molecular epidemiology of type 1 poliovirus in Central African Republic.Journal of General Virology 78, 591-599. [Google Scholar]
  29. Mulders, M. N., Lipskaya, G. Y., van der Avoort, H. G. A. M., Koopmans, M. P. G., Kew, O. M. & van Loon, A. M. (1995). Molecular epidemiology of wild poliovirus type 1 in Europe, the Middle East, and the Indian subcontinent.Journal of Infectious Diseases 171, 1399-1405.[CrossRef] [Google Scholar]
  30. Oberste, M. S., Maher, K. & Pallansch, M. A. (1998). Molecular phylogeny of all human enterovirus serotypes based on comparison of sequences at the 5′ end of the region encoding VP2.Virus Research 58, 35-43.[CrossRef] [Google Scholar]
  31. Oberste, M. S., Maher, K., Kilpatrick, D. R. & Pallansch, M. A. (1999). Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification.Journal of Virology 73, 1941-1948. [Google Scholar]
  32. Pöyry, T., Hyypiä, T., Horsnell, C., Kinnunen, L., Hovi, T. & Stanway, G. (1994). Molecular analysis of coxsackievirus A16 reveals a new genetic group of enteroviruses.Virology 202, 982-987.[CrossRef] [Google Scholar]
  33. Pöyry, T., Kinnunen, L., Hyypiä, T., Brown, B., Horsnell, C., Hovi, T. & Stanway, G. (1996). Genetic and phylogenetic clustering of enteroviruses.Journal of General Virology 77, 1699-1717.[CrossRef] [Google Scholar]
  34. Pulli, T., Koskimies, P. & Hyypiä, T. (1995). Molecular comparison of coxsackie A virus serotypes.Virology 212, 30-38.[CrossRef] [Google Scholar]
  35. Pulli, T., Lankinen, H., Roivainen, M. & Hyypiä, T. (1998a). Antigenic sites of coxsackievirus A9.Virology 240, 202-212.[CrossRef] [Google Scholar]
  36. Pulli, T., Roivainen, M., Hovi, T. & Hyypiä, T. (1998b). Induction of neutralizing antibodies by synthetic peptides representing the C terminus of coxsackievirus A9 capsid protein VP1.Journal of General Virology 79, 2249-2253. [Google Scholar]
  37. Rico-Hesse, R., Pallansch, M. A., Nottay, B. K. & Kew, O. M. (1987). Geographic distribution of wild poliovirus type 1 genotypes.Virology 160, 311-322.[CrossRef] [Google Scholar]
  38. Rivera, V. M., Welsh, J. D. & Maizel, J. V.Jr (1988). Comparative sequence analysis of the 5′ noncoding region of the enteroviruses and rhinoviruses.Virology 165, 42-50.[CrossRef] [Google Scholar]
  39. Roivainen, M., Hyypiä, T., Piirainen, L., Kalkkinen, N., Stanway, G. & Hovi, T. (1991). RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 protein by intestinal proteases.Journal of Virology 65, 4735-4740. [Google Scholar]
  40. Roivainen, M., Piirainen, L., Hovi, T., Virtanen, I., Riikonen, T., Heino, J. & Hyypiä, T. (1994). Entry of coxsackievirus A9 into host cells: specific interactions with αvβ3 integrin, the vitronectin receptor.Virology 203, 357-365.[CrossRef] [Google Scholar]
  41. Ruoslahti, E. (1996). RGD and other recognition sequences for integrins.Annual Review of Cell and Developmental Biology 12, 697-715.[CrossRef] [Google Scholar]
  42. Ruoslahti, E. & Pierschbacher, M. D. (1987). New perspectives in cell adhesion: RGD and integrins.Science 238, 491-497.[CrossRef] [Google Scholar]
  43. Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees.Molecular Biology and Evolution 4, 406-425. [Google Scholar]
  44. Santti, J., Hyypiä, T. & Halonen, P. (1997). Comparison of PCR primer pairs in the detection of human rhinoviruses in nasopharyngeal aspirates.Journal of Virological Methods 66, 139-147.[CrossRef] [Google Scholar]
  45. Santti, J., Hyypiä, T., Kinnunen, L. & Salminen, M. (1999). Evidence of recombination among enteroviruses.Journal of Virology 73, 8741-8749. [Google Scholar]
  46. Strikas, R. A., Andersson, L. J. & Parker, R. A. (1986). Temporal and geographic patterns of isolates of nonpolio enterovirus in the United States, 1970–1983.Journal of Infectious Diseases 153, 346-351.[CrossRef] [Google Scholar]
  47. Takeda, N., Tanimura, M. & Miyamura, K. (1994). Molecular evolution of the major capsid protein VP1 of enterovirus 70.Journal of Virology 68, 854-862. [Google Scholar]
  48. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. (1997). The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Research 25, 4876-4882.[CrossRef] [Google Scholar]
  49. Toyoda, H., Kohara, M., Kataoka, Y., Suganuma, T., Omata, T., Imura, N. & Nomoto, A. (1984). Complete nucleotide sequences of all three poliovirus serotype genomes. Implication for genetic relationship, gene function and antigenic determinants.Journal of Molecular Biology 174, 561-585.[CrossRef] [Google Scholar]
  50. Verdaguer, N., Mateu, M. G., Andreu, D., Giralt, E., Domingo, E. & Fita, I. (1995). Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction.EMBO Journal 14, 1690-1696. [Google Scholar]
  51. Yu, S. F. & Lloyd, R. E. (1991). Identification of essential amino acid residues in the functional activity of poliovirus 2A protease.Virology 182, 615-625.[CrossRef] [Google Scholar]
  52. Zheng, D.-P., Zhang, L.-B., Fang, Z.-Y., Yang, C.-F., Mulders, M., Pallansch, M. A. & Kew, O. M. (1993). Distribution of wild type 1 poliovirus genotypes in China.Journal of Infectious Diseases 168, 1361-1367.[CrossRef] [Google Scholar]
  53. Zoll, J., Galama, J. & Melchers, W. (1994). Intratypic genome variability of the coxsackievirus B1 2A protease region.Journal of General Virology 75, 687-692.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-81-5-1361
Loading
/content/journal/jgv/10.1099/0022-1317-81-5-1361
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error