Measles virus (MV), a single-stranded negative-sense RNA virus, is an important pathogen causing almost 1 million deaths annually. Acute MV infection induces immunity against disease throughout life. The immunological factors which are responsible for protection against measles are still poorly understood. However, T-cell-mediated immune responses seem to play a central role. The emergence of new single-cell methods for quantification of antigen-specific T-cells directly has prompted us to measure frequencies of MV-specific memory T-cells. As an indicator for T-cell activation IFN-γ production was measured. PBMC were analysed by intracellular staining and ELISPOT assay after stimulation with MV-infected autologous B-lymphoblastoid cell lines or dendritic cells. T-cell responses were exclusively seen with PBMC from MV-seropositive healthy adults with a history of natural measles in childhood. The median frequency of MV-specific T-cells was 0·35% for CD3CD4 and 0·24% for the CD3CD8 T-cell subset. These frequencies are comparable with T-cell numbers reported by other investigators for persistent virus infections such as Epstein–Barr virus, cytomegalovirus or human immunodeficiency virus. Hence, this study illustrates that MV-specific CD4 and CD8 T-cells are readily detectable long after the acute infection, and thus are probably contributing to long-term immunity. Furthermore, this new approach allows efficient analysis of T-cell responses from small samples of blood and could therefore be a useful tool to further elucidate the role of cell-mediated immunity in measles as well as in other viral infections.


Article metrics loading...

Loading full text...

Full text loading...



  1. Altman, J. D., Moss, P. A. H., Goulder, P. J. R., Barouch, D. H., McHeyzer-Williams, M. G., Bell, J. I., McMichael, A. J. & Davis, M. M. (1996). Phenotypic analysis of antigen-specific T lymphocytes.Science 274, 94-96.[CrossRef] [Google Scholar]
  2. Burnet, F. M. (1968). Measles as an index for immunological function.Lancet ii, 610-663. [Google Scholar]
  3. Busch, D. H., Pilip, I. M., Vijh, S. & Pamer, E. G. (1998). Coordinate regulation of complex T-cell populations responding to bacterial infection.Immunity 8, 353-362.[CrossRef] [Google Scholar]
  4. Butz, E. A. & Bevan, M. J. (1998). Massive expansion of antigen-specific CD8+ T-cells during an acute virus infection.Immunity 8, 167-175.[CrossRef] [Google Scholar]
  5. Callan, M. F., Tan, L., Annels, N., Ogg, G. S., Wilson, J. D., O’Callaghan, C. A., Steven, N., McMichael, A. J. & Rickinson, A. B. (1998). Direct visualization of antigen-specific CD8+ T-cells during the primary immune response to Epstein-Barr virus in vivo.Journal of Experimental Medicine 187, 1395-1402.[CrossRef] [Google Scholar]
  6. Chen, R. T., Markowitz, L. E., Albrecht, P., Stewart, J. A., Mofenson, L. M., Preblud, S. R. & Orenstein, W. A. (1990). Measles antibody: reevaluation of protective titers.Journal of Infectious Diseases 162, 1036-1042.[CrossRef] [Google Scholar]
  7. Crawford, F., Kozono, H., White, J., Marrack, P. & Kappler, J. (1998). Detection of antigen-specific T-cells with multivalent soluble class II MHC covalent peptide complexes.Immunity 8, 675-682.[CrossRef] [Google Scholar]
  8. Dalod, M., Sinet, M., Deschemin, J. C., Fiorentino, S., Venet, A. & Guillet, J. G. (1999a). Altered ex vivo balance between CD28+ and CD28 cells within HIV-specific CD8+ T-cells of HIV-seropositive patients.European Journal of Immunology 29, 38-44.[CrossRef] [Google Scholar]
  9. Dalod, M., Dupuis, M., Deschemin, J. C., Sicard, D., Salmon, D., Delfraissy, J. F., Venet, A., Sinet, M. & Guillet, J. G. (1999b). Broad intense anti-human immunodeficiency virus (HIV) ex vivo CD8+ responses in HIV type 1-infected patients: comparison with anti-Epstein-Barr virus responses and changes during antiretroviral therapy.Journal of Virology 73, 7108-7116. [Google Scholar]
  10. Doherty, P. C. (1998). The numbers game for virus-specific CD8+ T-cells.Science 280, 227.[CrossRef] [Google Scholar]
  11. Engelking, O., Fedorov, L. M., Lilischkis, R., ter Meulen, V. & Schneider-Schaulies, S. (1999). Measles virus-induced immunosuppression in vitro is associated with deregulation of G1 cell cycle control proteins.Journal of General Virology 80, 1599-1608. [Google Scholar]
  12. Esolen, L. M., Ward, B. J., Moench, T. R. & Griffin, D. E. (1993). Infection of monocytes during measles.Journal of Infectious Diseases 168, 47-52.[CrossRef] [Google Scholar]
  13. Flynn, K. J., Belz, G. T., Altman, J. D., Ahmed, R., Woodland, D. L. & Doherty, P. C. (1998). Virus-specific CD8+ T-cells in primary and secondary influenza pneumonia.Immunity 8, 683-691.[CrossRef] [Google Scholar]
  14. Fujihashi, K., McGhee, J. R., Beagley, K. W., McPherson, D. T., McPherson, S. A., Huang, C. M. & Kiyono, H. (1993). Cytokine-specific ELISPOT assay. Single cell analysis of IL-2, IL-4 and IL-6 producing cells.Journal of Immunological Methods 160, 181-189.[CrossRef] [Google Scholar]
  15. Gustafson, T. L., Lievens, A. W., Brunell, P. A., Moellenberg, R. G., Buttery, C. M. & Sehulster, L. M. (1987). Measles outbreak in a fully immunized secondary-school population.New England Journal of Medicine 316, 771-774.[CrossRef] [Google Scholar]
  16. Jacobson, S., Richert, J. R., Biddison, W. E., Satinsky, A., Hartzman, R. J. & McFarland, H. F. (1984). Measles virus-specific T4+ human cytotoxic T-cell clones are restricted by class II HLA antigens.Journal of Immunology 133, 754-757. [Google Scholar]
  17. Joseph, B. S., Lampert, P. W. & Oldstone, M. B. (1975). Replication and persistence of measles virus in defined subpopulations of human leukocytes.Journal of Virology 16, 1638-1649. [Google Scholar]
  18. Kalams, S. A. & Walker, B. D. (1998). The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses.Journal of Experimental Medicine 188, 2199-2204.[CrossRef] [Google Scholar]
  19. Katz, M. (1995). Clinical spectrum of measles.Current Topics in Microbiology and Immunology 191, 1-12. [Google Scholar]
  20. Kern, F., Surel, I. P., Brock, C., Freistedt, B., Radtke, H., Scheffold, A., Blasczyk, R., Reinke, P., Schneider-Mergener, J., Radbruch, A., Walden, P. & Volk, H. D. (1998). T-cell epitope mapping by flow cytometry.Nature Medicine 4, 975-978.[CrossRef] [Google Scholar]
  21. McChesney, M. B. & Oldstone, M. B. (1989). Virus-induced immunosuppression: infections with measles virus and human immunodeficiency virus.Advanced Immunology 45, 335-380. [Google Scholar]
  22. Mongkolsapaya, J., Jaye, A., Callan, M. F. C., Magnusen, A. F., McMichael, A. J. & Whittle, H. C. (1999). Antigen-specific expansion of cytotoxic T lymphocytes in acute measles virus infection.Journal of Virology 73, 67-71. [Google Scholar]
  23. Murali-Krishna, K., Altman, J. D., Suresh, M., Sourdive, D. J., Zajac, A. J., Miller, J. D., Slansky, J. & Ahmed, R. (1998). Counting antigen-specific CD8 T-cells: a re-evaluation of bystander activation during viral infection.Immunity 8, 177-187.[CrossRef] [Google Scholar]
  24. Nanan, R., Carstens, C. & Kreth, H. W. (1995). Demonstration of virus-specific CD8+ memory T-cells in measles-seropositive individuals by in vitro peptide stimulation.Clinical and Experimental Immunology 102, 40-45. [Google Scholar]
  25. Openshaw, P., Murphy, E. E., Hosken, N. A., Maino, V., Davis, K., Murphy, K. & O’Garra, A. (1995). Heterogeneity of intracellular cytokine synthesis at the single-cell level in polarized T helper 1 and T helper 2 populations.Journal of Experimental Medicine 182, 1357-1367.[CrossRef] [Google Scholar]
  26. Panum, P. L. (1940).Observation made during the epidemics of measles in the Faroe Islands in the year 1846. New York: New York Public Health Association.
  27. Pitcher, C. J., Quittner, C., Peterson, D. M., Connors, M., Koup, R. A., Maino, V. C. & Picker, L. J. (1999). HIV-1-specific CD4+ T-cells are detectable in most individuals with active HIV-1 infection, but decline with prolonged viral suppression. Nature Medicine 518525. [Google Scholar]
  28. Richardson, C. D. & Choppin, P. W. (1983). Oligopeptides that specifically inhibit membrane fusion by paramyxoviruses: studies on the site of action.Virology 131, 518-532.[CrossRef] [Google Scholar]
  29. Salter, R. D. & Cresswell, P. (1986). Impaired assembly and transport of HLA-A and -B antigens in a mutant T×B cell hybrid.EMBO Journal 5, 943-949. [Google Scholar]
  30. Sarawar, S. R. & Doherty, P. C. (1994). Concurrent production of interleukin-2, interleukin-10, and gamma interferon in the regional lymph nodes of mice with influenza pneumonia.Journal of Virology 68, 3112-3119. [Google Scholar]
  31. Scheibenbogen, C., Lee, K. H., Stevanovic, S., Witzens, M., Willhauck, M., Waldmann, V., Naeher, H., Rammensee, H. G. & Keilholz, U. (1997). Analysis of the T-cell response to tumor and viral peptide antigens by an IFNgamma-ELISPOT assay.International Journal of Cancer 71, 932-936.[CrossRef] [Google Scholar]
  32. Tan, L. C., Gudgeon, N., Annels, N. E., Hansasuta, P., O’Callaghan, C. A., Rowland-Jones, S., McMichael, A. J., Rickinson, A. B. & Callan, M. F. (1999). A re-evaluation of the frequency of CD8+ T-cells specific for EBV in healthy virus carriers.Journal of Immunology 162, 1827-1835. [Google Scholar]
  33. Thiele, D. L. & Lipsky, P. E. (1985). Modulation of human natural killer cell function by l-leucine methylester: monocyte-dependent depletion from human peripheral blood mononuclear cells.Journal of Immunology 134, 786-790. [Google Scholar]
  34. Van Binnendijk, R. S., Poelen, M. C., Kuijpers, K. C., Osterhaus, A. D. & Uytdehaag, F. G. (1990). The predominance of CD8+ T-cells after infection with measles virus suggests a role for CD8+ class I MHC-restricted cytotoxic T lymphocytes (CTL) in recovery from measles. Clonal analyses of human CD8+ class I MHC-restricted CTL.Journal of Immunology 144, 2394-2399. [Google Scholar]
  35. Waldrop, S. L., Pitcher, C. J., Peterson, D. M., Maino, V. C. & Picker, L. J. (1997). Determination of antigen-specific memory/effector CD4+ T-cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency.Journal of Clinical Investigation 99, 1739-1750.[CrossRef] [Google Scholar]
  36. Zajac, A. J., Blattman, J. N., Murali-Krishna, K., Sourdive, D. J. D., Altman, J. D. & Ahmed, R. (1998). Viral immune evasion due to persistence of activated T cells without effector function.Journal of Experimental Medicine 188, 2205-2213.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error