More than 20 near full-length genome sequences have been reported for human polyomavirus JC (JCV). These have previously been classified into seven genotypes, and additional subtypes, which exhibit geographical associations. One of these genotypes, Type 4, has been suggested to be a recombinant of Types 1 and 3. We have investigated the pattern of diversity, and evolutionary relationships, among these sequences. In direct contradiction of a recent report, we found that different phylogenetic methods gave consistent results for the phylogenetic relationships among strains. The single known strain representing Type 5 was shown to be a mosaic of sequences from Types 2 and 6, although whether this recombination occurred or is not clear. In contrast, there was no substantial evidence that Type 4 strains are recombinant; rather they seem to be simply divergent examples of Type 1. On the assumption that the major genotypes of JCV diverged with human populations, the rate of synonymous nucleotide substitution was estimated to be around 4×10 per site per year, about 10 times higher than a previous estimate for primate polyomaviruses.


Article metrics loading...

Loading full text...

Full text loading...



  1. Agostini, H. T., Ryschkewitsch, C. F. & Stoner, G. L. (1996). Genotype profile of human polyomavirus JC excreted in urine of immunocompetent individuals.Journal of Clinical Microbiology 34, 159-164. [Google Scholar]
  2. Agostini, H. T., Ryschkewitsch, C. F., Brubaker, G. R., Shao, J. & Stoner, G. L. (1997a). Five complete genomes of JC virus Type 3 from Africans and African Americans.Archives of Virology 142, 637-655.[CrossRef] [Google Scholar]
  3. Agostini, H. T., Yanagihara, R., Davis, V., Ryschkewitsch, C. F. & Stoner, G. L. (1997b). Asian genotypes of JC virus in native Americans and in a Pacific island population: markers of viral evolution and human migration.Proceedings of the National Academy of Sciences, USA 94, 14542-14546.[CrossRef] [Google Scholar]
  4. Agostini, H. T., Ryschkewitsch, C. F. & Stoner, G. L. (1998a). JC virus Type 1 has multiple subtypes: three new complete genomes.Journal of General Virology 79, 801-805. [Google Scholar]
  5. Agostini, H. T., Shishido-Hara, Y., Baumhefner, R. W., Singer, E. J., Ryschkewitsch, C. F. & Stoner, G. L. (1998b). JC virus type 2: definition of subtypes based on DNA sequence analysis of ten complete genomes.Journal of General Virology 79, 1143-1151. [Google Scholar]
  6. Dolan, A., Jamieson, F. E., Cunningham, C., Barnett, B. C. & McGeoch, D. J. (1998). The genome sequence of herpes simplex virus type 2.Journal of Virology 72, 2010-2021. [Google Scholar]
  7. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap.Evolution 39, 783-791.[CrossRef] [Google Scholar]
  8. Felsenstein, J. (1992). PHYLIP (Phylogeny Inference Package), version 3.5c. Department of Genetics, University of Washington, Seattle, WA, USA.
  9. Fitch, W. M., Leiter, J. M. E., Li, X. & Palese, P. (1991). Positive Darwinian evolution in human influenza A viruses.Proceedings of the National Academy of Sciences, USA 88, 4270-4274.[CrossRef] [Google Scholar]
  10. Frisque, R. J., Bream, G. L. & Canella, M. T. (1984). Human polyomavirus JC virus genome.Journal of Virology 51, 458-469. [Google Scholar]
  11. Goldring, N. B., Kessler, M. & Aloni, Y. (1992). Parameters affecting the elongation block by RNA polymerase II at the SV40 attenuator-1 in vitro.Biochemistry 31, 8369-8376.[CrossRef] [Google Scholar]
  12. Gouy, M., Gautier, C., Attimonelli, M., Lanave, C. & Di Paola, G. (1985). ACNUC – a portable retrieval system for nucleic acid sequence databases: logical and physical designs and usage.CABIOS 1, 167-172. [Google Scholar]
  13. Guo, J., Kitamura, T., Ebihara, H., Sugimoto, C., Kunitake, T., Takehisa, J., Na, Y. Q., Al-Ahdal, M. N., Hallin, A., Kawabe, K., Taguchi, F. & Yogo, Y. (1996). Geographical distribution of the human polyomavirus JC virus types A and B and isolation of a new type from Ghana.Journal of General Virology 77, 919-927.[CrossRef] [Google Scholar]
  14. Guo, J., Sugimoto, C., Kitamura, T., Ebihara, H., Kato, A., Guo, Z., Liu, J., Zheng, S. P., Wang, Y. L., Na, Y. Q., Suzuki, M., Taguchi, F. & Yogo, Y. (1998). Four geographically distinct genotypes of JC virus are prevalent in China and Mongolia: implications for the racial composition of modern China.Journal of General Virology 79, 2499-2505. [Google Scholar]
  15. Jakobsen, I. B. & Easteal, S. (1996). A program for calculating and displaying compatibility matrices as an aid in determining reticulate evolution in molecular sequences.CABIOS 12, 291-295. [Google Scholar]
  16. Jobes, D. V., Chima, S. C., Ryschkewitsch, C. F. & Stoner, G. L. (1998). Phylogenetic analysis of 22 complete genomes of the human polyomavirus JC virus.Journal of General Virology 79, 2491-2498. [Google Scholar]
  17. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.Journal of Molecular Evolution 16, 111-120.[CrossRef] [Google Scholar]
  18. Li, W.-H. (1993). Unbiased estimation of the rates of synonymous and nonsynonymous substitution.Journal of Molecular Evolution 36, 96-99.[CrossRef] [Google Scholar]
  19. Li, W.-H. (1997).Molecular Evolution.Sunderland, MA: Sinauer Associates.
  20. Li, W.-H., Tanimura, M. & Sharp, P. M. (1987). An evaluation of the molecular clock hypothesis using mammalian DNA sequences.Journal of Molecular Evolution 25, 330-342.[CrossRef] [Google Scholar]
  21. Li, W.-H., Tanimura, M. & Sharp, P. M. (1988). Rates and dates of divergence between AIDS virus nucleotide sequences.Molecular Biology and Evolution 5, 313-330. [Google Scholar]
  22. Loeber, G. & Dörries, K. (1988). DNA rearrangements in organ-specific variants of polyomavirus JC strain GS.Journal of Virology 62, 1730-1735. [Google Scholar]
  23. McGeoch, D. J., Cook, S., Dolan, A., Jamieson, F. E. & Telford, E. A. R. (1995). Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses.Journal of Molecular Biology 247, 443-458.[CrossRef] [Google Scholar]
  24. Padgett, B. L., Walker, D. L., Zurhein, G. M., Eckroad, R. J. & Dessel, B. H. (1971). Cultivation of papova-like virus from human brain with progressive multifocal leukoencephalopathy. Lancet i, 1257–1260.
  25. Robertson, D. L., Hahn, B. H. & Sharp, P. M. (1995). Recombination in AIDS viruses.Journal of Molecular Evolution 40, 249-259.[CrossRef] [Google Scholar]
  26. Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing evolutionary trees.Molecular Biology and Evolution 4, 406-425. [Google Scholar]
  27. Shah, K. V. (1990). Polyomaviruses. In Virology, pp. 1609-1623. Edited by B. N. Fields & D. M. Knipe. New York: Raven Press.
  28. Soeda, E., Maruyama, T., Arrand, J. R. & Griffin, B. E. (1980). Host-dependent evolution of three papova viruses.Nature 285, 165-167.[CrossRef] [Google Scholar]
  29. Sugimoto, C., Kitamura, T., Guo, J., Al-Ahdal, M. N., Shchelkunov, S. N., Otova, B., Ondrejka, P., Chollet, J.-Y., El-Safi, S., Ettayebi, M., Gresenguet, G., Kocagoz, T., Chaiyarasamee, S., Thant, K. Z., Thein, S., Moe, K., Kobayashi, N., Taguchi, F. & Yogo, Y. (1997). Typing of urinary JC virus DNA offers a novel means of tracing human migrations.Proceedings of the National Academy of Sciences, USA 94, 9191-9196.[CrossRef] [Google Scholar]
  30. Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Research 22, 4673-4680.[CrossRef] [Google Scholar]
  31. von Haeseler, A., Sajantila, A. & Pääbo, S. (1996). The genetical archaeology of the human genome.Nature Genetics 14, 135-140.[CrossRef] [Google Scholar]
  32. Weiller, G. F. (1998). Phylogenetic profiles: a graphical method for detecting genetic recombinations in homologous sequences.Molecular Biology and Evolution 15, 326-335.[CrossRef] [Google Scholar]
  33. Yasunaga, T. & Miyata, T. (1982). Evolutionary changes of nucleotide sequences of papova viruses BKV and SV40: they are possibly hybrids.Journal of Molecular Evolution 19, 72-79.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error